Multifarious Functions of Butyrylcholinesterase in Neuroblastoma: Impact of BCHE Deletion on the Neuroblastoma Growth In Vitro and In Vivo
- PMID: 34486544
- DOI: 10.1097/MPH.0000000000002285
Multifarious Functions of Butyrylcholinesterase in Neuroblastoma: Impact of BCHE Deletion on the Neuroblastoma Growth In Vitro and In Vivo
Abstract
The physiological functions of butyrylcholinesterase (BChE) and its role in malignancy remain unexplained. Our studies in children newly diagnosed with neuroblastoma indicated that BChE expressions is proportional to MYCN amplification suggesting that pathogenesis of high-risk disease may be related to the persistent expression of abnormally high levels of tumor-associated BChE. BChE-deficient neuroblastoma cells (KO [knockout]) were produced from MYCN -amplified BE(2)-C cells (WT [wild-type]) by the CRISPR-Cas9 targeted disruption of the BCHE locus. KO cells have no detectable BChE activity. The compensatory acetylcholinesterase activity was not detected. The average population doubling time of KO cells is 47.0±2.4 hours, >2× longer than WT cells. Reduced proliferation rates of KO cells were accompanied by the loss of N-Myc protein and a significant deactivation of tyrosine kinase receptors associated with the aggressive neuroblastoma phenotype including Ros1, TrkB, and Ltk. Tumorigenicity of WT and KO cells in male mice was essentially identical. In contrast, KO xenografts in female mice were very small (0.37±0.10 g), ~3× smaller compared with WT xenografts (1.11±0.30 g). Unexpectedly, KO xenografts produced changes in plasma BChE similarly to WT tumors but lesser in magnitude. The disruption of BCHE locus in MYCN -amplified neuroblastoma cells decelerates proliferation and produces neuroblastoma cells that are less aggressive in female mice.
Trial registration: ClinicalTrials.gov NCT03213652 NCT03107988.
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Conflict of interest statement
The authors declare no conflict of interest.
References
-
- Mohlin SA, Wigerup C, Påhlman S. Neuroblastoma aggressiveness in relation to sympathetic neuronal differentiation stage. Semin Cancer Biol. 2011;21:276–282.
-
- Reiff T, Tsarovina K, Majdazari A, et al. Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci. 2010;30:905–915.
-
- Joseph NM, Mukouyama YS, Mosher JT, et al. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development. 2004;131:5599–5612.
-
- Dupin E, Calloni G, Real C, et al. Neural crest progenitors and stem cells. C R Biol. 2007;330:521–529.
-
- Ross RA, Biedler JL, Spengler BA. A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett. 2003;197:35–39.
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
