Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan 15;434(1):167228.
doi: 10.1016/j.jmb.2021.167228. Epub 2021 Sep 4.

Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function

Affiliations
Review

Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function

Martina Ramella et al. J Mol Biol. .

Abstract

Networks of scaffold proteins and enzymes assemble at the interface between the cytosol and specific sites of the plasma membrane, where these networks guide distinct cellular functions. Some of these plasma membrane-associated platforms (PMAPs) include shared core components that are able to establish specific protein-protein interactions, to produce distinct supramolecular assemblies regulating dynamic processes as diverse as cell adhesion and motility, or the formation and function of neuronal synapses. How cells organize such dynamic networks is still an open question. In this review we introduce molecular networks assembling at the edge of migrating cells, and at pre- and postsynaptic sites, which share molecular players that can drive the assembly of biomolecular condensates. Very recent experimental evidence has highlighted the emerging role of some of these multidomain/scaffold proteins belonging to the GIT, liprin-α and ELKS/ERC families as drivers of liquid-liquid phase separation (LLPS). The data point to an important role of LLPS: (i) in the formation of PMAPs at the edge of migrating cells, where LLPS appears to be involved in promoting protrusion and the turnover of integrin-mediated adhesions, to allow forward cell translocation; (ii) in the assembly of the presynaptic active zone and of the postsynaptic density deputed to the release and reception of neurotransmitter signals, respectively. The recent results indicate that LLPS at cytosol-membrane interfaces is suitable not only for the regulation of active cellular processes, but also for the continuous spatial rearrangements of the molecular interactions involved in these dynamic processes.

Keywords: biomolecular condensates; cell migration; focal adhesions; plasma membrane–associated platforms; presynaptic active zone.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources