Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022;15(4):620-646.
doi: 10.2174/1874467214666210906122054.

Obesity and Inflammation: Colorectal Cancer Engines

Affiliations

Obesity and Inflammation: Colorectal Cancer Engines

Lara J Bou Malhab et al. Curr Mol Pharmacol. 2022.

Abstract

The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.

Keywords: Chemotherapy; STAT3 signaling pathway; chronic inflammation; colorectal cancer; microenvironment; obesity.

PubMed Disclaimer

Publication types