Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
- PMID: 34491202
- PMCID: PMC8423438
- DOI: 10.7554/eLife.62091
Activity-dependent regulation of mitochondrial motility in developing cortical dendrites
Abstract
Developing neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We investigated the relationship between mitochondrial motility and neuronal activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. Global calcium transients do not affect mitochondrial motility. However, individual synaptic transmission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle release, but not focal glutamate application alone, stops mitochondria, suggesting that an unidentified factor co-released with glutamate is required for mitochondrial arrest. A computational model of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in synapse number and transmission frequency can contribute substantially to the age-dependent decrease of mitochondrial motility.
Keywords: calcium signaling; in vivo imaging; intracellular transport; mouse; neuroscience; synaptic transmission.
© 2021, Silva et al.
Conflict of interest statement
CS, AY, MF, MV, CL None, Mv none
Figures









Similar articles
-
Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held.J Neurophysiol. 2021 Oct 1;126(4):976-996. doi: 10.1152/jn.00333.2021. Epub 2021 Aug 25. J Neurophysiol. 2021. PMID: 34432991 Free PMC article.
-
Mitochondrial trafficking to synapses in cultured primary cortical neurons.J Neurosci. 2006 Jun 28;26(26):7035-45. doi: 10.1523/JNEUROSCI.1012-06.2006. J Neurosci. 2006. PMID: 16807333 Free PMC article.
-
In vivo mitochondrial inhibition alters corticostriatal synaptic function and the modulatory effects of neurotrophins.Neuroscience. 2014 Nov 7;280:156-70. doi: 10.1016/j.neuroscience.2014.09.018. Epub 2014 Sep 18. Neuroscience. 2014. PMID: 25241069
-
Mitochondria at the synapse.Neuroscientist. 2006 Aug;12(4):291-9. doi: 10.1177/1073858406287661. Neuroscientist. 2006. PMID: 16840705 Review.
-
Dynamics of postsynaptic glutamate receptor targeting.Curr Opin Neurobiol. 2007 Feb;17(1):53-8. doi: 10.1016/j.conb.2006.11.001. Epub 2006 Dec 11. Curr Opin Neurobiol. 2007. PMID: 17161597 Review.
Cited by
-
The compartmentalised nature of neuronal mitophagy: molecular insights and implications.Expert Rev Mol Med. 2022 Sep 29;24:e38. doi: 10.1017/erm.2022.31. Expert Rev Mol Med. 2022. PMID: 36172898 Free PMC article. Review.
-
Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction.Nat Metab. 2023 Apr;5(4):546-562. doi: 10.1038/s42255-023-00783-1. Epub 2023 Apr 26. Nat Metab. 2023. PMID: 37100996 Free PMC article. Review.
-
Site-specific mitochondrial dysfunction in neurodegeneration.Mitochondrion. 2022 May;64:1-18. doi: 10.1016/j.mito.2022.02.004. Epub 2022 Feb 16. Mitochondrion. 2022. PMID: 35182728 Free PMC article.
-
Dendrite architecture determines mitochondrial distribution patterns in vivo.Cell Rep. 2024 May 28;43(5):114190. doi: 10.1016/j.celrep.2024.114190. Epub 2024 May 6. Cell Rep. 2024. PMID: 38717903 Free PMC article.
-
Mitochondrial energy state controls AMPK-mediated foraging behavior in C. elegans.Sci Adv. 2024 Apr 19;10(16):eadm8815. doi: 10.1126/sciadv.adm8815. Epub 2024 Apr 17. Sci Adv. 2024. PMID: 38630817 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials