Shaping Dynamics With Multiple Populations in Low-Rank Recurrent Networks
- PMID: 34496384
- DOI: 10.1162/neco_a_01381
Shaping Dynamics With Multiple Populations in Low-Rank Recurrent Networks
Abstract
An emerging paradigm proposes that neural computations can be understood at the level of dynamic systems that govern low-dimensional trajectories of collective neural activity. How the connectivity structure of a network determines the emergent dynamical system, however, remains to be clarified. Here we consider a novel class of models, gaussian-mixture, low-rank recurrent networks in which the rank of the connectivity matrix and the number of statistically defined populations are independent hyperparameters. We show that the resulting collective dynamics form a dynamical system, where the rank sets the dimensionality and the population structure shapes the dynamics. In particular, the collective dynamics can be described in terms of a simplified effective circuit of interacting latent variables. While having a single global population strongly restricts the possible dynamics, we demonstrate that if the number of populations is large enough, a rank R network can approximate any R-dimensional dynamical system.
© 2021 Massachusetts Institute of Technology.
Similar articles
-
Relating local connectivity and global dynamics in recurrent excitatory-inhibitory networks.PLoS Comput Biol. 2023 Jan 23;19(1):e1010855. doi: 10.1371/journal.pcbi.1010855. eCollection 2023 Jan. PLoS Comput Biol. 2023. PMID: 36689488 Free PMC article.
-
Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks.Neuron. 2018 Aug 8;99(3):609-623.e29. doi: 10.1016/j.neuron.2018.07.003. Epub 2018 Jul 26. Neuron. 2018. PMID: 30057201
-
The impact of sparsity in low-rank recurrent neural networks.PLoS Comput Biol. 2022 Aug 9;18(8):e1010426. doi: 10.1371/journal.pcbi.1010426. eCollection 2022 Aug. PLoS Comput Biol. 2022. PMID: 35944030 Free PMC article.
-
Dynamics on the manifold: Identifying computational dynamical activity from neural population recordings.Curr Opin Neurobiol. 2021 Oct;70:163-170. doi: 10.1016/j.conb.2021.10.014. Epub 2021 Nov 24. Curr Opin Neurobiol. 2021. PMID: 34837752 Review.
-
A unifying perspective on neural manifolds and circuits for cognition.Nat Rev Neurosci. 2023 Jun;24(6):363-377. doi: 10.1038/s41583-023-00693-x. Epub 2023 Apr 13. Nat Rev Neurosci. 2023. PMID: 37055616 Free PMC article. Review.
Cited by
-
Gated recurrence enables simple and accurate sequence prediction in stochastic, changing, and structured environments.Elife. 2021 Dec 2;10:e71801. doi: 10.7554/eLife.71801. Elife. 2021. PMID: 34854377 Free PMC article.
-
Geometry of population activity in spiking networks with low-rank structure.PLoS Comput Biol. 2023 Aug 7;19(8):e1011315. doi: 10.1371/journal.pcbi.1011315. eCollection 2023 Aug. PLoS Comput Biol. 2023. PMID: 37549194 Free PMC article.
-
De novo motor learning creates structure in neural activity that shapes adaptation.Nat Commun. 2024 May 14;15(1):4084. doi: 10.1038/s41467-024-48008-7. Nat Commun. 2024. PMID: 38744847 Free PMC article.
-
Stochastic activity in low-rank recurrent neural networks.bioRxiv [Preprint]. 2025 Jul 11:2025.04.22.649933. doi: 10.1101/2025.04.22.649933. bioRxiv. 2025. Update in: PLoS Comput Biol. 2025 Aug 18;21(8):e1013371. doi: 10.1371/journal.pcbi.1013371. PMID: 40672187 Free PMC article. Updated. Preprint.
-
Prediction of neural activity in connectome-constrained recurrent networks.bioRxiv [Preprint]. 2024 May 28:2024.02.22.581667. doi: 10.1101/2024.02.22.581667. bioRxiv. 2024. PMID: 38854115 Free PMC article. Preprint.
Publication types
LinkOut - more resources
Full Text Sources