Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul;17(7):e2100304.
doi: 10.1002/biot.202100304. Epub 2021 Sep 23.

CRISPR-Cas enzymes: The toolkit revolutionizing diagnostics

Affiliations

CRISPR-Cas enzymes: The toolkit revolutionizing diagnostics

Matthew S Verosloff et al. Biotechnol J. 2022 Jul.

Abstract

The programmable nature of sequence-specific targeting by CRISPR-Cas nucleases has revolutionized a wide range of genomic applications and is now emerging as a method for nucleic acid detection. We explore how the diversity of CRISPR systems and their fundamental mechanisms have given rise to a wave of new methods for target recognition and readout. These cross-disciplinary advances found at the intersection of CRISPR biology and engineering have led to the ability to rapidly generate solutions for emerging global challenges like the COVID-19 pandemic. We further discuss the advances and potential for CRISPR-based detection to have an impact across a continuum of diagnostic applications.

Keywords: CRISPR diagnostics; CRISPR-Cas proteins; biochemistry; bioengineering; nucleic acid detection.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Broughton J. P., Deng X., Yu G., Fasching C. L., Servellita V., Singh J., Miao X., Streithorst J. A., Granados A., Sotomayor-Gonzalez A., Zorn K., Gopez A., Hsu E., Gu W., Miller S., Pan Chao-Yang, Guevara H., Wadford D. A., Chen J. S., Chiu C. Y., CRISPR-Cas12-based detection of SARS-CoV-2 Nature Biotechnology 2020, 38, (7), 870-874. http://doi.org/10.1038/s41587-020-0513-4.
    1. Joung J., Ladha A., Saito M., Kim Nam-Gyun, Woolley A. E., Segel M., Barretto R. P. J., Ranu A., Macrae R. K., Faure G., Ioannidi E. I., Krajeski R. N., Bruneau R., Huang Meei-Li W., Yu X. G., Li J. Z., Walker B. D., Hung D. T., Greninger A. L., Jerome K. R., Gootenberg J. S., Abudayyeh O. O., Zhang F., Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing New England Journal of Medicine 2020, 383, (15), 1492-1494. http://doi.org/10.1056/nejmc2026172.
    1. Hajian R., Balderston S., Tran T., deBoer T., Etienne J., Sandhu M., Wauford N. A., Chung Jing-Yi, Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I. M., Aran K., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor Nature Biomedical Engineering 2019, 3, (6), 427-437. http://doi.org/10.1038/s41551-019-0371-x.
    1. Zetsche B., Gootenberg J. S., Abudayyeh O. O., Slaymaker I. M., Makarova K. S., Essletzbichler P., Volz S. E., Joung J., van der Oost J., Regev A., Koonin E. V., Zhang F., Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System Cell 2015, 163, (3), 759-771. http://doi.org/10.1016/j.cell.2015.09.038.
    1. Stella S., Mesa P., Thomsen J., Paul B., Alcón P., Jensen S. B., Saligram B., Moses M. E., Hatzakis N. S., Montoya G., Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity Cell 2018, 175, (7), 1856-1871.e21. http://doi.org/10.1016/j.cell.2018.10.045.

LinkOut - more resources