CRISPR-Cas enzymes: The toolkit revolutionizing diagnostics
- PMID: 34505742
- DOI: 10.1002/biot.202100304
CRISPR-Cas enzymes: The toolkit revolutionizing diagnostics
Abstract
The programmable nature of sequence-specific targeting by CRISPR-Cas nucleases has revolutionized a wide range of genomic applications and is now emerging as a method for nucleic acid detection. We explore how the diversity of CRISPR systems and their fundamental mechanisms have given rise to a wave of new methods for target recognition and readout. These cross-disciplinary advances found at the intersection of CRISPR biology and engineering have led to the ability to rapidly generate solutions for emerging global challenges like the COVID-19 pandemic. We further discuss the advances and potential for CRISPR-based detection to have an impact across a continuum of diagnostic applications.
Keywords: CRISPR diagnostics; CRISPR-Cas proteins; biochemistry; bioengineering; nucleic acid detection.
© 2021 Wiley-VCH GmbH.
Similar articles
-
CRISPR-Cas guides the future of genetic engineering.Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011. Science. 2018. PMID: 30166482 Free PMC article. Review.
-
Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications.ACS Chem Biol. 2018 Feb 16;13(2):347-356. doi: 10.1021/acschembio.7b00800. Epub 2017 Dec 5. ACS Chem Biol. 2018. PMID: 29121460 Free PMC article. Review.
-
Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review.Biosens Bioelectron. 2022 May 1;203:114033. doi: 10.1016/j.bios.2022.114033. Epub 2022 Jan 25. Biosens Bioelectron. 2022. PMID: 35131696 Review.
-
CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications.ACS Synth Biol. 2023 Jan 20;12(1):1-16. doi: 10.1021/acssynbio.2c00496. Epub 2022 Dec 12. ACS Synth Biol. 2023. PMID: 36508352 Free PMC article. Review.
-
[CRISPR-based molecular diagnostics: a review].Sheng Wu Gong Cheng Xue Bao. 2023 Jan 25;39(1):60-73. doi: 10.13345/j.cjb.220317. Sheng Wu Gong Cheng Xue Bao. 2023. PMID: 36738201 Review. Chinese.
Cited by
-
COVID-19 Variant Detection with a High-Fidelity CRISPR-Cas12 Enzyme.J Clin Microbiol. 2022 Jul 20;60(7):e0026122. doi: 10.1128/jcm.00261-22. Epub 2022 Jun 29. J Clin Microbiol. 2022. PMID: 35766492 Free PMC article.
-
Prime editing-mediated correction of the leptin receptor in muscle cells of db/db mice.Biotechnol J. 2024 May;19(5):e2300676. doi: 10.1002/biot.202300676. Biotechnol J. 2024. PMID: 38730523 Free PMC article.
-
Novel CRISPR-based detection of Leishmania species.Front Microbiol. 2022 Sep 15;13:958693. doi: 10.3389/fmicb.2022.958693. eCollection 2022. Front Microbiol. 2022. PMID: 36187950 Free PMC article.
-
Rescue of the disease-associated phenotype in CRISPR-corrected hiPSCs as a therapeutic approach for inherited retinal dystrophies.Mol Ther Nucleic Acids. 2025 Feb 11;36(1):102482. doi: 10.1016/j.omtn.2025.102482. eCollection 2025 Mar 11. Mol Ther Nucleic Acids. 2025. PMID: 40083649 Free PMC article.
References
REFERENCES
-
- Broughton J. P., Deng X., Yu G., Fasching C. L., Servellita V., Singh J., Miao X., Streithorst J. A., Granados A., Sotomayor-Gonzalez A., Zorn K., Gopez A., Hsu E., Gu W., Miller S., Pan Chao-Yang, Guevara H., Wadford D. A., Chen J. S., Chiu C. Y., CRISPR-Cas12-based detection of SARS-CoV-2 Nature Biotechnology 2020, 38, (7), 870-874. http://doi.org/10.1038/s41587-020-0513-4.
-
- Joung J., Ladha A., Saito M., Kim Nam-Gyun, Woolley A. E., Segel M., Barretto R. P. J., Ranu A., Macrae R. K., Faure G., Ioannidi E. I., Krajeski R. N., Bruneau R., Huang Meei-Li W., Yu X. G., Li J. Z., Walker B. D., Hung D. T., Greninger A. L., Jerome K. R., Gootenberg J. S., Abudayyeh O. O., Zhang F., Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing New England Journal of Medicine 2020, 383, (15), 1492-1494. http://doi.org/10.1056/nejmc2026172.
-
- Hajian R., Balderston S., Tran T., deBoer T., Etienne J., Sandhu M., Wauford N. A., Chung Jing-Yi, Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I. M., Aran K., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor Nature Biomedical Engineering 2019, 3, (6), 427-437. http://doi.org/10.1038/s41551-019-0371-x.
-
- Zetsche B., Gootenberg J. S., Abudayyeh O. O., Slaymaker I. M., Makarova K. S., Essletzbichler P., Volz S. E., Joung J., van der Oost J., Regev A., Koonin E. V., Zhang F., Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System Cell 2015, 163, (3), 759-771. http://doi.org/10.1016/j.cell.2015.09.038.
-
- Stella S., Mesa P., Thomsen J., Paul B., Alcón P., Jensen S. B., Saligram B., Moses M. E., Hatzakis N. S., Montoya G., Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity Cell 2018, 175, (7), 1856-1871.e21. http://doi.org/10.1016/j.cell.2018.10.045.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical