Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr-Jun;54(2):81-94.
doi: 10.1016/j.ram.2021.04.004. Epub 2021 Jul 24.

[Evaluation of interventions during the COVID-19 pandemic: development of a model based on subpopulations with different contact rates]

[Article in Spanish]
Affiliations

[Evaluation of interventions during the COVID-19 pandemic: development of a model based on subpopulations with different contact rates]

[Article in Spanish]
Nicolás Morando et al. Rev Argent Microbiol. 2022 Apr-Jun.

Abstract

Although multiple attempts have been made to mathematically model the current epidemic of SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), few models have been conceived as accessible interactive tools for users from various backgrounds. The goal of this study was to develop a model that took into account the heterogeneity in contact rates within the population and to implement it in an accessible application allowing to estimate the impact of possible interventions based on available information. An extended version of the Susceptible-Exposed-Infected-Resistant (SEIR) model, named SEIR-HL, was developed, assuming a population divided into two subpopulations, with different contact rates. Additionally, a formula for the calculation of the basic reproduction number (R0) for a population divided into n subpopulations was proposed, where the contact rates for each subpopulation can be distinguished according to contact type or context. The predictions made by SEIR-HL were compared to those of SEIR, showing that the heterogeneity in contact rates can dramatically affect the dynamics of simulations, even when run from the same initial conditions and with the same parameters. SEIR-HL was used to predict the effect on the epidemic evolution of the displacement of individuals from high-contact positions to low-contact positions. Lastly, by way of example, SEIR-HL was applied to the analysis of the SARS-CoV-2 epidemic in Argentina and an example of the application of the R0 formula was also developed. Both the SEIR-HL model and an R0 calculator were computerized and made available to the community.

Si bien se han realizado múltiples intentos de modelar matemáticamente la pandemia de la enfermedad por coronavirus 2019 (COVID-19), causada por SARS-CoV-2, pocos modelos han sido pensados como herramientas interactivas accesibles para usuarios de distintos ámbitos. El objetivo de este trabajo fue desarrollar un modelo que tuviera en cuenta la heterogeneidad de las tasas de contacto de la población e implementarlo en una aplicación accesible, que permitiera estimar el impacto de posibles intervenciones a partir de información disponible. Se desarrolló una versión ampliada del modelo susceptible-expuesto-infectado-resistente (SEIR), denominada SEIR-HL, que asume una población dividida en dos subpoblaciones, con tasas de contacto diferentes. Asimismo, se desarrolló una fórmula para calcular el número básico de reproducción (R0) para una población dividida en n subpoblaciones, discriminando las tasas de contacto de cada subpoblación según el tipo o contexto de contacto. Se compararon las predicciones del SEIR-HL con las del SEIR y se demostró que la heterogeneidad en las tasas de contacto puede afectar drásticamente la dinámica de las simulaciones, aun partiendo de las mismas condiciones iniciales y los mismos parámetros. Se empleó el SEIR-HL para mostrar el efecto sobre la evolución de la pandemia del desplazamiento de individuos desde posiciones de alto contacto hacia posiciones de bajo contacto. Finalmente, a modo de ejemplo, se aplicó el SEIR-HL al análisis de la pandemia de COVID-19 en Argentina; también se desarrolló un ejemplo de uso de la fórmula del R0. Tanto el SEIR-HL como una calculadora del R0 fueron implementados informáticamente y puestos a disposición de la comunidad.

Keywords: Argentina; Basic reproduction number; COVID-19; Model; Modelo; Número básico de reproducción; SARS-CoV-2; SEIR.

PubMed Disclaimer

Figures

Figura 1
Figura 1
Simulación de susceptibles, expuestos, infecciosos y recuperados en función del tiempo, generadas para una población de 1 millón con 100 infectados iniciales, una tasa de contactos promedio de 3,67, σ = 0, 2, γ = 0, 0714, usando el modelo SEIR (A) y el modelo SEIR-HL (B-D). (A) Modelo SEIR,. (B) Modelo SEIR-HL, H = 10, 33, L = 2. (C) Modelo SEIR-HL, H = 14, 33,. (D) Modelo SEIR-HL, ,. Las simulaciones con SEIR-HL se realizaron para una población dividida en una subpoblación de 200.000 con tasa de contactos mayor y 20 infectados iniciales, y otra de 800.000 con tasa de contactos menor y 80 infectados iniciales (p = 0, 06). Los valores de H y L fueron elegidos de manera que se mantenga la misma tasa de contacto promedio (3,67) y el mismo valor de (0,22) en todas las simulaciones.
Figura 2
Figura 2
Simulación de curvas H y L de susceptibles, expuestos, infecciosos y recuperados en función del tiempo, para distintos valores de la tasa de desplazamiento D, para una población de 1 millón con 100 infectados iniciales (inicialmente 20 en la subpoblación de menor contacto y 80 en la subpoblación de mayor contacto). Parámetros: H = 10, L = 1, , ,.
Figura 3
Figura 3
Tiempo en que se alcanza el pico de la curva de infectados (A, D), número de individuos infectados en el pico de la curva de infectados (B, E), número de individuos infectados totales (C, F), para distintos valores de la tasa de desplazamiento D, para poblaciones con la misma tasa de contactos promedio inicial pero distinta distribución de contactos. (A-C) Valores absolutos. (D-F) Valores normalizados, tomando como referencia los valores correspondientes a D igual a 0. Todas las simulaciones se realizaron para una población de 1 millón con 100 infectados iniciales. Previo al desplazamiento, la tasa de contactos promedio era igual a 10 para todas las poblaciones, y las mismas estaban divididas en una subpoblación de 200.000 con tasa de contactos mayor y 20 infectados iniciales, y otra de 800.000 con tasa de contactos menor y 80 infectados iniciales. Parámetros: , ,. Los valores de H y L fueron elegidos de manera que se mantenga la misma tasa de contacto promedio (10) en todas las simulaciones.
Figura 4
Figura 4
Ajuste del modelo SEIR-HL a los datos reportados de nuevas infecciones de COVID-19 en Argentina. (A) «Cuarentena + relajamiento»: modelo ajustado en tres secciones: 09/03/2020-19/03/2020 (una población, C = 20), 20/03/2020-10/05/2020 (dos subpoblaciones: 75% con , 25% con ), 11/05/2020-22/06/2020 (dos subpoblaciones: 75% con L = 2, 34, 25% con H = 2, 85). «Cuarentena»: modelo ajustado en dos secciones: 09/03/2020-19/03/2020 (una población, ), 20/03/2020-10/05/2020 (dos subpoblaciones: 75% con L = 0, 5, 25% con ), se extrapolaron las nuevas infecciones para el período del 11/05/2020-22/06/2020 suponiendo que la población mantenía los parámetros del segundo ajuste. (B) Se presentan los mismos modelos ajustados que en A, junto con el modelo «Sin cuarentena» (modelo ajustado para el período 09/03/2020-19/03/2020 (una población, ) y extrapolado para el período 20/03/2020-22/06/2020 suponiendo que la población mantenía los parámetros de este ajuste. Parámetros fijos: , y ). El eje vertical se muestra en escala logarítmica para facilitar la comparación.

References

    1. Aleta A., Moreno Y. Evaluation of the potential incidence of COVID-19 and effectiveness of containment measures in Spa data-driven a approach. BMC Med. 2020;18:157. - PMC - PubMed
    1. Baker, Peckham M.G., Seixas T.K.N.S. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection. PLoS One. 2020;15:e0232452. - PMC - PubMed
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. - PMC - PubMed
    1. Decreto N∘297. Boletín Oficial de la República Argen-tina, Ciudad Autónoma de Buenos Aires, Argentina,2020 2020 Mar, [consultado 24 Ago 2021]. Disponible en: https://www.boletinoficial.gob.ar/detalleAviso/primera/227042/20200320
    1. Delamater P.L., Street E.J., Leslie T.F., Yang Y.T., Jacobsen K.H. Complexity of the basic reproduction number (R0) Emerg Infect Dis. 2019;25:1–4. - PMC - PubMed