Quantitative proteomic analysis of glycosylated proteins enriched from urine samples with magnetic ConA nanoparticles identifies potential biomarkers for small cell lung cancer
- PMID: 34509662
- DOI: 10.1016/j.jpba.2021.114352
Quantitative proteomic analysis of glycosylated proteins enriched from urine samples with magnetic ConA nanoparticles identifies potential biomarkers for small cell lung cancer
Abstract
Lung cancer has high morbidity and mortality and small cell lung cancer (SCLC) is a highly invasive malignant tumor with a very unfavorable survival rate. Early diagnosis and treatment can result in better prognosis for the SCLC patients but current diagnostic methods are either invasive or incapable for large-scale screen. Therefore, discovering biomarkers for early diagnosis of SCLC is of importance. In this work, we covalently coupled Concanavalin A (ConA) to functionalized magnetic nanoparticles to obtain magnetic ConA-nanoparticles (ConA-NPs) for the enrichment of glycosylated proteins. We then purified glycosylated proteins in 36 urine samples from 9 healthy controls, 9 SCLC patients, 9 lung adenocarcinoma (LUAD) patients, and 9 lung squamous cell carcinoma (LUSC) patients. The purified glycosylated proteins were digested and analyzed by LC-MS/MS for identification and quantification. Among the 398 identified proteins, 20, 15, and 1 glycosylated protein(s), respectively, were upregulated in the urine of SCLC, LUAD, and LUSC patients. Immunoblotting experiments further demonstrated that cathepsin C and transferrin were significantly upregulated in the ConA-NP purified urine of SCLC patients. This work suggests that glycosylated cathepsin C and transferrin might be able to serve as potential biomarkers for the noninvasive diagnosis of SCLC patients.
Keywords: Biomarker; Cathepsin C; Glycosylated protein; Lung cancer; Proteomics; Transferrin.
Copyright © 2021 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous