Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree
- PMID: 34518539
- PMCID: PMC8438073
- DOI: 10.1038/s41467-021-25652-x
Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree
Abstract
Plant-mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2 on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of Quercus rubra L. to increasing ambient CO2 (iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2.
© 2021. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




References
-
- Piao S, et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020;1:14–27. doi: 10.1038/s43017-019-0001-x. - DOI
-
- Ellsworth DS, et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change. 2017;7:279–282. doi: 10.1038/nclimate3235. - DOI
Publication types
LinkOut - more resources
Full Text Sources