Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 15;40(23):5006-5024.
doi: 10.1002/sim.9108. Epub 2021 Jun 22.

An approximate quasi-likelihood approach for error-prone failure time outcomes and exposures

Affiliations

An approximate quasi-likelihood approach for error-prone failure time outcomes and exposures

Lillian A Boe et al. Stat Med. .

Abstract

Measurement error arises commonly in clinical research settings that rely on data from electronic health records or large observational cohorts. In particular, self-reported outcomes are typical in cohort studies for chronic diseases such as diabetes in order to avoid the burden of expensive diagnostic tests. Dietary intake, which is also commonly collected by self-report and subject to measurement error, is a major factor linked to diabetes and other chronic diseases. These errors can bias exposure-disease associations that ultimately can mislead clinical decision-making. We have extended an existing semiparametric likelihood-based method for handling error-prone, discrete failure time outcomes to also address covariate error. We conduct an extensive numerical study to compare the proposed method to the naive approach that ignores measurement error in terms of bias and efficiency in the estimation of the regression parameter of interest. In all settings considered, the proposed method showed minimal bias and maintained coverage probability, thus outperforming the naive analysis which showed extreme bias and low coverage. This method is applied to data from the Women's Health Initiative to assess the association between energy and protein intake and the risk of incident diabetes mellitus. Our results show that correcting for errors in both the self-reported outcome and dietary exposures leads to considerably different hazard ratio estimates than those from analyses that ignore measurement error, which demonstrates the importance of correcting for both outcome and covariate error.

Keywords: Cox model; measurement error; misclassification; proportional hazards; regression calibration; survival analysis.

PubMed Disclaimer

References

    1. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017. Vol 20. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2017:1–20.
    1. Shah BR, Manuel DG. Self-reported diabetes is associated with self-management behaviour: a cohort study. BMC Health Serv Res. 2008;8(1):142. - PMC - PubMed
    1. Ning M, Zhang Q, Yang M. Comparison of self-reported and biomedical data on hypertension and diabetes: findings from the China Health and Retirement Longitudinal Study (CHARLS). BMJ Open. 2016;6(1):e009836. - PMC - PubMed
    1. Schneider AL, Pankow JS, Heiss G, Selvin E. Validity and reliability of self-reported diabetes in the atherosclerosis risk in communities study. Am J Epidemiol. 2012;176(8):738–743. - PMC - PubMed
    1. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. Measurement Error in Nonlinear Models: A Modern Perspective. Boca Raton, FL: Chapman & Hall/CRC Press; 2006.

Publication types

LinkOut - more resources