Genomic Features Associated with the Degree of Phenotypic Resistance to Carbapenems in Carbapenem-Resistant Klebsiella pneumoniae
- PMID: 34519526
- PMCID: PMC8547452
- DOI: 10.1128/mSystems.00194-21
Genomic Features Associated with the Degree of Phenotypic Resistance to Carbapenems in Carbapenem-Resistant Klebsiella pneumoniae
Abstract
Carbapenem-resistant Klebsiella pneumoniae strains cause severe infections that are difficult to treat. The production of carbapenemases such as the K. pneumoniae carbapenemase (KPC) is a common mechanism by which these strains resist killing by the carbapenems. However, the degree of phenotypic carbapenem resistance (MIC) may differ markedly between isolates with similar carbapenemase genes, suggesting that our understanding of the underlying mechanisms of carbapenem resistance remains incomplete. To address this problem, we determined the whole-genome sequences of 166 K. pneumoniae clinical isolates resistant to meropenem, imipenem, or ertapenem. Multiple linear regression analysis of this collection of largely blaKPC-3-containing sequence type 258 (ST258) isolates indicated that blaKPC copy number and some outer membrane porin gene mutations were associated with higher MICs to carbapenems. A trend toward higher MICs was also observed with those blaKPC genes carried by the d isoform of Tn4401. In contrast, ompK37 mutations were associated with lower carbapenem MICs, and extended spectrum β-lactamase genes were not associated with higher or lower MICs in carbapenem-resistant K. pneumoniae. A machine learning approach based on the whole-genome sequences of these isolates did not result in a substantial improvement in prediction of isolates with high or low MICs. These results build upon previous findings suggesting that multiple factors influence the overall carbapenem resistance levels in carbapenem-resistant K. pneumoniae isolates. IMPORTANCE Klebsiella pneumoniae can cause severe infections in the blood, urinary tract, and lungs. Resistance to carbapenems in K. pneumoniae is an urgent public health threat, since it can make these isolates difficult to treat. While individual contributors to carbapenem resistance in K. pneumoniae have been studied, few reports explore their combined effects in clinical isolates. We sequenced 166 clinical carbapenem-resistant K. pneumoniae isolates to evaluate the contribution of known genes to carbapenem MICs and to try to identify novel genes associated with higher carbapenem MICs. The blaKPC copy number and some outer membrane porin gene mutations were associated with higher carbapenem MICs. In contrast, mutations in one specific porin, ompK37, were associated with lower carbapenem MICs. Machine learning did not result in a substantial improvement in the prediction of carbapenem resistance nor did it identify novel genes associated with carbapenem resistance. These findings enhance our understanding of the many contributors to carbapenem resistance in K. pneumoniae.
Keywords: Klebsiella pneumoniae; antibiotic resistance; carbapenem; machine learning; whole-genome sequencing.
Figures






References
-
- World Health Organization. 2017. Prioritization of pathogens to guide discovery. research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. (WHO/EMP/IAU/2017.12). License CC BY-NC-SA 3.0 IGO. World Health Organization, Geneva, Switzerland.
-
- van Duin D, Arias CA, Komarow L, Chen L, Hanson BM, Weston G, Cober E, Garner OB, Jacob JT, Satlin MJ, Fries BC, Garcia-Diaz J, Doi Y, Dhar S, Kaye KS, Earley M, Hujer AM, Hujer KM, Domitrovic TN, Shropshire WC, Dinh A, Manca C, Luterbach CL, Wang M, Paterson DL, Banerjee R, Patel R, Evans S, Hill C, Arias R, Chambers HF, Fowler VG, Kreiswirth BN, Bonomo RA, Multi-Drug Resistant Organism Network Investigators . 2020. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis 20:731–741. doi:10.1016/S1473-3099(19)30755-8. - DOI - PMC - PubMed
-
- Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M, Hsueh P-R, Viale P, Paño-Pardo JR, Venditti M, Tumbarello M, Daikos G, Cantón R, Doi Y, Tuon FF, Karaiskos I, Pérez-Nadales E, Schwaber MJ, Azap ÖK, Souli M, Roilides E, Pournaras S, Akova M, Pérez F, Bermejo J, Oliver A, Almela M, Lowman W, Almirante B, Bonomo RA, Carmeli Y, Paterson DL, Pascual A, REIPI/ESGBIS/INCREMENT Investigators . 2017. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis 17:726–734. doi:10.1016/S1473-3099(17)30228-1. - DOI - PubMed
-
- Satlin MJ, Chen L, Patel G, Gomez-Simmonds A, Weston G, Kim AC, Seo SK, Rosenthal ME, Sperber SJ, Jenkins SG, Hamula CL, Uhlemann AC, Levi MH, Fries BC, Tang YW, Juretschko S, Rojtman AD, Hong T, Mathema B, Jacobs MR, Walsh TJ, Bonomo RA, Kreiswirth BN. 2017. Multicenter clinical and molecular epidemiological analysis of bacteremia due to carbapenem-resistant Enterobacteriaceae (CRE) in the CRE epicenter of the United States. Antimicrob Agents Chemother 61:e02349-16. doi:10.1128/AAC.02349-16. - DOI - PMC - PubMed
-
- Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, Xie L, Yang C, Ma X, Li H, Li W, Zhang X, Liao K, Man S, Wang S, Wen H, Li B, Guo Z, Tian J, Pei F, Liu L, Zhang L, Zou C, Hu T, Cai J, Yang H, Huang J, Jia X, Huang W, Cao B, Wang H. 2018. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE network. Antimicrob Agents Chemother 62:e01882-17. doi:10.1128/AAC.01882-17. - DOI - PMC - PubMed
Grants and funding
- K24AI04831/HHS | National Institutes of Health (NIH)
- KL2 TR002002/TR/NCATS NIH HHS/United States
- R01AI148560/HHS | National Institutes of Health (NIH)
- U19AI135964/HHS | National Institutes of Health (NIH)
- U19 AI135964/AI/NIAID NIH HHS/United States
- R01AI118257/HHS | National Institutes of Health (NIH)
- T32 GM008152/GM/NIGMS NIH HHS/United States
- R01 AI118257/AI/NIAID NIH HHS/United States
- Chicago Biomedical Consortium
- R01 AI148560/AI/NIAID NIH HHS/United States
- R21 AI129167/AI/NIAID NIH HHS/United States
- R21AI129167/HHS | National Institutes of Health (NIH)
- T32GM008152/HHS | National Institutes of Health (NIH)
LinkOut - more resources
Full Text Sources
Molecular Biology Databases