Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2021 Dec 1:538:111454.
doi: 10.1016/j.mce.2021.111454. Epub 2021 Sep 11.

Effects of thyroxine on apoptosis and proliferation of mammary tumors

Affiliations
Comparative Study

Effects of thyroxine on apoptosis and proliferation of mammary tumors

Leila E Zyla et al. Mol Cell Endocrinol. .

Abstract

Hypothyroidism is a protective factor against breast cancer but long-term exposure or overdoses of thyroid replacement therapy with thyroxine (T4) may increase breast cancer risk.

Objective: to study, in vivo and in vitro, the effects of T4 on the proliferation and apoptosis of mammary tumors of hypo- and euthyroid rats, and the possible mechanisms involved in these effects.

Material and methods: Female Sprague-Dawley rats were treated with a single dose of dimethylbenzathracene (15 mg/rat) at 55 days of age and were divided into three groups: hypothyroidism (HypoT; 0.01% 6-N-propyl-2-thiouracil -PTU- in drinking water, n = 20), hypothyroidism treated with T4 (HypoT + T4; 0.01% PTU in drinking water and 0.25 mg/kg/day T4 via sc; n = 20) and EUT (untreated control, n = 20). At sacrifice, tumor explants from HypoT and EUT rats were obtained and treated either with 10-10 M T4 in DMEM/F12 without phenol red with 1% Charcoalized Fetal Bovine Serum or DMEM/F12 only for 15 min to evaluate intracellular signaling pathways associated with T4, and 24 h to evaluate changes in the expression of hormone receptors and proteins related to apoptosis and proliferation by immunohistochemistry and Western Blot.

Results: In vivo, hypothyroidism retards mammary carcinogenesis but its treatment with T4 reverted the protective effects. In vitro, the proliferative and anti-apoptosis mechanisms of T4 were different regarding the thyroid status. In EUT tumors, the main signaling pathway involved was the cross-talk with other receptors, such as ERα, PgR, and HER2. In HypoT tumors, the non-genomic signaling pathway of T4 was the chief mechanism involved since αvβ3 integrin, HER2, β-catenin and, downstream, PI3K/AKT and ERK signaling pathways were activated.

Conclusion: T4 can regulate mammary carcinogenesis by mainly activating its non-genomic signaling pathway and by interacting with other hormone or growth factor pathways endorsing that overdoses of thyroid replacement therapy with T4 can increase the risk of breast cancer.

Keywords: Breast cancer; HER2; TRβ1; Thyroxine; αvβ3 integrin; β-catenin.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources