Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer
- PMID: 34526701
- DOI: 10.1038/s41585-021-00514-9
Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer
Abstract
Patients with high-risk prostate cancer treated with curative intent are at an increased risk of biochemical recurrence, metastatic progression and cancer-related death compared with patients treated for low-risk or intermediate-risk disease. Thus, these patients often need multimodal therapy to achieve complete disease control. Over the past two decades, multiple studies on the use of neoadjuvant treatment have been performed using conventional androgen deprivation therapy, which comprises luteinizing hormone-releasing hormone agonists or antagonists and/or first-line anti-androgens. However, despite results from these studies demonstrating a reduction in positive surgical margins and tumour volume, no benefit has been observed in hard oncological end points, such as cancer-related death. The introduction of potent androgen receptor signalling inhibitors (ARSIs), such as abiraterone, apalutamide, enzalutamide and darolutamide, has led to a renewed interest in using neoadjuvant hormonal treatment in high-risk prostate cancer. The addition of ARSIs to androgen deprivation therapy has demonstrated substantial survival benefits in the metastatic castration-resistant, non-metastatic castration-resistant and metastatic hormone-sensitive settings. Intuitively, a similar survival effect can be expected when applying ARSIs as a neoadjuvant strategy in high-risk prostate cancer. Most studies on neoadjuvant ARSIs use a pathological end point as a surrogate for long-term oncological outcome. However, no consensus yet exists regarding the ideal definition of pathological response following neoadjuvant hormonal therapy and pathologists might encounter difficulties in determining pathological response in hormonally treated prostate specimens. The neoadjuvant setting also provides opportunities to gain insight into resistance mechanisms against neoadjuvant hormonal therapy and, consequently, to guide personalized therapy.
© 2021. Springer Nature Limited.
References
-
- Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). - PubMed
-
- Zelic, R. et al. Predicting prostate cancer death with different pretreatment risk stratification tools: a head-to-head comparison in a nationwide cohort study. Eur. Urol. 77, 180–188 (2020). - PubMed
-
- Joniau, S. et al. Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study. Eur. Urol. 67, 157–164 (2015). - PubMed
-
- D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
