Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Jul;20(7):1499-1507.e4.
doi: 10.1016/j.cgh.2021.09.009. Epub 2021 Sep 14.

Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial)

Affiliations
Free article
Randomized Controlled Trial

Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial)

Jeremy R Glissen Brown et al. Clin Gastroenterol Hepatol. 2022 Jul.
Free article

Abstract

Background & aims: Artificial intelligence-based computer-aided polyp detection (CADe) systems are intended to address the issue of missed polyps during colonoscopy. The effect of CADe during screening and surveillance colonoscopy has not previously been studied in a United States (U.S.) population.

Methods: We conducted a prospective, multi-center, single-blind randomized tandem colonoscopy study to evaluate a deep-learning based CADe system (EndoScreener, Shanghai Wision AI, China). Patients were enrolled across 4 U.S. academic medical centers from 2019 through 2020. Patients presenting for colorectal cancer screening or surveillance were randomized to CADe colonoscopy first or high-definition white light (HDWL) colonoscopy first, followed immediately by the other procedure in tandem fashion by the same endoscopist. The primary outcome was adenoma miss rate (AMR), and secondary outcomes included sessile serrated lesion (SSL) miss rate and adenomas per colonoscopy (APC).

Results: A total of 232 patients entered the study, with 116 patients randomized to undergo CADe colonoscopy first and 116 patients randomized to undergo HDWL colonoscopy first. After the exclusion of 9 patients, the study cohort included 223 patients. AMR was lower in the CADe-first group compared with the HDWL-first group (20.12% [34/169] vs 31.25% [45/144]; odds ratio [OR], 1.8048; 95% confidence interval [CI], 1.0780-3.0217; P = .0247). SSL miss rate was lower in the CADe-first group (7.14% [1/14]) vs the HDWL-first group (42.11% [8/19]; P = .0482). First-pass APC was higher in the CADe-first group (1.19 [standard deviation (SD), 2.03] vs 0.90 [SD, 1.55]; P = .0323). First-pass ADR was 50.44% in the CADe-first group and 43.64 % in the HDWL-first group (P = .3091).

Conclusion: In this U.S. multicenter tandem colonoscopy randomized controlled trial, we demonstrate a decrease in AMR and SSL miss rate and an increase in first-pass APC with the use of a CADe-system when compared with HDWL colonoscopy alone.

Trial registration: ClinicalTrials.gov NCT03925337.

Keywords: Adenoma Detection Rate; Adenoma Miss Rate; Computer-aided Detection; Deep Learning; Randomized Tandem Colonoscopy Study.

PubMed Disclaimer

Publication types

Associated data