Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;29(5):671-673.
doi: 10.1177/15533506211042505. Epub 2021 Sep 17.

Toward a Next-Generation Digital Chest Tube

Affiliations

Toward a Next-Generation Digital Chest Tube

Daniel T DeArmond et al. Surg Innov. 2022 Oct.

Abstract

Chest tubes in patients who have undergone pulmonary resection with pleural air leak are painful, impair ventilatory mechanics, and increase hospital length of stay and costs. Despite these well-documented concerns, current protocols for chest tube management in this setting are not well supported by evidence. Excessive suction applied to chest tubes has been associated with prolonged air leak due to alveolar over-distension, and most practitioners intuit that suction should be minimized to the lowest level needed to maintain desired pleural apposition. Unfortunately, there is no evidence-based protocol for the establishment of minimal adequate suction. Digital suction devices in current clinical use can identify air leak resolution preventing the delay of chest tube removal but cannot guide suction minimization while an air leak persists. We recently described a monitor of lung expansion in a porcine model of pleural air leak that could detect loss of pleural apposition continuously in real-time based on electrical impedance readings obtained directly from the surface of the lung via chest tube-embedded electrodes. The value of the impedance signal was "in-range" when pleural apposition was present but became abruptly "out-of-range" when pneumothorax due to inadequate suction developed. These findings suggested that a digitally controlled suction pump system could be programmed to recognize the development of pneumothorax and automatically identify and set the minimum level of suction required to maintain pleural apposition. We present here preliminary proof of concept for this system.

Keywords: acute care surgery; biomedical engineering; thoracic surgery.

PubMed Disclaimer

LinkOut - more resources