Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov:138:104850.
doi: 10.1016/j.compbiomed.2021.104850. Epub 2021 Sep 10.

Reducing variability of breast cancer subtype predictors by grounding deep learning models in prior knowledge

Affiliations
Free article

Reducing variability of breast cancer subtype predictors by grounding deep learning models in prior knowledge

Paul Anderson et al. Comput Biol Med. 2021 Nov.
Free article

Abstract

Deep learning neural networks have improved performance in many cancer informatics problems, including breast cancer subtype classification. However, many networks experience underspecificationwheremultiplecombinationsofparametersachievesimilarperformance, bothin training and validation. Additionally, certain parameter combinations may perform poorly when the test distribution differs from the training distribution. Embedding prior knowledge from the literature may address this issue by boosting predictive models that provide crucial, in-depth information about a given disease. Breast cancer research provides a wealth of such knowledge, particularly in the form of subtype biomarkers and genetic signatures. In this study, we draw on past research on breast cancer subtype biomarkers, label propagation, and neural graph machines to present a novel methodology for embedding knowledge into machine learning systems. We embed prior knowledge into the loss function in the form of inter-subject distances derived from a well-known published breast cancer signature. Our results show that this methodology reduces predictor variability on state-of-the-art deep learning architectures and increases predictor consistency leading to improved interpretation. We find that pathway enrichment analysis is more consistent after embedding knowledge. This novel method applies to a broad range of existing studies and predictive models. Our method moves the traditional synthesis of predictive models from an arbitrary assignment of weights to genes toward a more biologically meaningful approach of incorporating knowledge.

Keywords: Applied computing; Bioinformatics; Genomics; Transcriptomics.

PubMed Disclaimer

Publication types

LinkOut - more resources