Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep 3:11:698023.
doi: 10.3389/fonc.2021.698023. eCollection 2021.

The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer

Affiliations
Review

The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer

Chang Liu et al. Front Oncol. .

Abstract

Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.

Keywords: Warburg effect; chemoresistance; signaling pathway; transporters and key enzymes of glycolysis; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Glycolysis in cancer: cancer cells choose glycolysis as their primary energy source even under normoxia, which means pyruvate is mainly converted into lactate to play its role in energy source, rather than being incorporated into the TCA cycle. GLUT1 is responsible for transporting glucose, and MCTs are responsible for transporting lactate. ②, phosphohexose isomerase; ④, aldolase; ⑤, triose phosphate isomerase; ⑥, glyceraldehyde 3-phosphate dehydrogenase; ⑦, phosphoglycerate kinase; ⑧, phosphoglycerate mutase; ⑨, enolase.
Figure 2
Figure 2
Association between glycolysis transporter, key enzymes, and PI3K, HIF-1, C-MYC signaling pathways. PI3K, HIF-1, and C-MYC signaling pathways can activate the expression of key glycolysis enzymes and transporters to ensure cancer metabolism and energy supply; at the same time, the key enzymes and transporters of glycolysis can activate chemoresistance-related signaling pathways through their own or other protein mediators.
Figure 3
Figure 3
Association between Warburg effect-induced chemoresistance and tumor microenvironment. Tumor microenvironment undergoes a series of adjustments such as hypoxia, acidosis, and stromal cell formation to survival, which interact with glycolysis and oncogene PI3K, HIF-1 signaling pathways to induce chemoresistance in cancer.

References

    1. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell (2011) 144(5):646–74. 10.1016/j.cell.2011.02.013 - DOI - PubMed
    1. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg Effect Supports Aggressiveness and Drug Resistance of Cancer Cells? Drug Resist Update (2018) 38:1–11. 10.1016/j.drup.2018.03.001 - DOI - PubMed
    1. Warburg O. The Metabolism of Tumors. In: Constable & Co Ltd (1930).
    1. Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-Induced Chemoresistance in Cancer Cells: The Role of Not Only HIF-1. BioMed Pap Med Fac. Univ. Palacky Olomouc Czech Repub (2015) 159(2):166–77. 10.5507/bp.2015.025 - DOI - PubMed
    1. Wouters BG, van den Beucken T, Magagnin MG, Lambin P, Koumenis C. Targeting Hypoxia Tolerance in Cancer. Drug Resist Update (2004) 7(1):25–40. 10.1016/j.drup.2003.12.004 - DOI - PubMed

LinkOut - more resources