Evolution of anticodons: variations in the genetic code
- PMID: 3454289
- DOI: 10.1101/sqb.1987.052.01.086
Evolution of anticodons: variations in the genetic code
Abstract
Clues to evolution of the genetic code can be found by comparing usage of anticodons in various organisms and organelles. GC content of DNA varies, as a result of directional mutation pressure (AT/GC pressure), especially in bacteria. Low GC in Mycoplasma is accompanied by use of UGA for tryptophan and, in ciliated protozoa, by use of UAA and UAG for glutamine. These are examples of "stop codon capture," which has been preceded by duplication of tRNA genes followed by nucleotide substitutions in their sequences, including mutational changes in their anticodons. Evolutionary changes in the code may have resulted from disappearance of codons and anticodons resulting from GC pressure and from their reappearance when the direction of the pressure was reversed. In this manner, codon UGA and anticodon UCA for tryptophan could have disappeared under GC pressure and reappeared in Mycoplasma under AT pressure. Stop codon UGA may have been the third of the three stop codons to appear, originating from mutations in UAA. Changes in the code are adaptive and nondeleterious. We propose that the number of anticodons has increased and that evolution continued until three existing forms of the universal code were produced: eukaryotic, eubacterial, and the code for halobacteria and methanococci. These three codes are distinguished from each other by their anticodon pattern. The eukaryotic code contains eight INN (ANN) anticodons that have replaced GNN anticodons as a result of AT pressure. Mitochondrial and chloroplast codes have evolved from the eubacterial code through genomic economization and AT pressure, leading to losses of GNN and CNN anticodons.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous