Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;11(12):687-709.
doi: 10.1089/wound.2021.0091. Epub 2021 Dec 20.

Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review

Affiliations

Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review

D M Anisuzzaman et al. Adv Wound Care (New Rochelle). 2022 Dec.

Abstract

Significance: Accurately predicting wound healing trajectories is difficult for wound care clinicians due to the complex and dynamic processes involved in wound healing. Wound care teams capture images of wounds during clinical visits generating big datasets over time. Developing novel artificial intelligence (AI) systems can help clinicians diagnose, assess the effectiveness of therapy, and predict healing outcomes. Recent Advances: Rapid developments in computer processing have enabled the development of AI-based systems that can improve the diagnosis and effectiveness of therapy in various clinical specializations. In the past decade, we have witnessed AI revolutionizing all types of medical imaging like X-ray, ultrasound, computed tomography, magnetic resonance imaging, etc., but AI-based systems remain to be developed clinically and computationally for high-quality wound care that can result in better patient outcomes. Critical Issues: In the current standard of care, collecting wound images on every clinical visit, interpreting and archiving the data are cumbersome and time consuming. Commercial platforms are developed to capture images, perform wound measurements, and provide clinicians with a workflow for diagnosis, but AI-based systems are still in their infancy. This systematic review summarizes the breadth and depth of the most recent and relevant work in intelligent image-based data analysis and system developments for wound assessment. Future Directions: With increasing availabilities of massive data (wound images, wound-specific electronic health records, etc.) as well as powerful computing resources, AI-based digital platforms will play a significant role in delivering data-driven care to people suffering from debilitating chronic wounds.

Keywords: artificial intelligence; deep learning; wound diagnosis; wound measurement; wound systems.

PubMed Disclaimer

Publication types

LinkOut - more resources