Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery
- PMID: 34545239
- DOI: 10.1038/s41585-021-00511-y
Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery
Abstract
Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.
© 2021. Springer Nature Limited.
References
-
- Jelovsek, J. E. et al. Effect of uterosacral ligament suspension vs sacrospinous ligament fixation with or without perioperative behavioral therapy for pelvic organ vaginal prolapse on surgical outcomes and prolapse symptoms at 5 years in the OPTIMAL Randomized Clinical Trial. JAMA 319, 1554 (2018). - PubMed - PMC - DOI
-
- Lapitan, M. C. M., Cody, J. D. & Mashayekhi, A. Open retropubic colposuspension for urinary incontinence in women. Cochrane Database Syst. Rev. 2, CD002912 (2017).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
