Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;29(8):11765-11779.
doi: 10.1007/s11356-021-16332-w. Epub 2021 Sep 21.

Mechanism of action and toxicological evaluation of engineered layered double hydroxide nanomaterials in Biomphalaria alexandrina snails

Affiliations

Mechanism of action and toxicological evaluation of engineered layered double hydroxide nanomaterials in Biomphalaria alexandrina snails

Heba Abdel-Tawab et al. Environ Sci Pollut Res Int. 2022 Feb.

Abstract

Layered double hydroxide (LDH) nanomaterials have recently become immense research area as it is used widely in industries. So, it's chance of their release into natural environment and risk assessment to nontarget aquatic invertebrate increasing. So, the present study aimed to synthesize and confirm the crystalline formation of Co-Cd-Fe LDHs and Co-Cd-Fe/PbI2 (LDH) and then to investigate the toxic impact of the two LDH on the adult freshwater snails (Biomphalaia alexandrina). Results showed that Co-Cd-Fe/PbI2 LDH has more toxic effect to adult Biomphalaria than Co-Cd-Fe LDHs (LC50 was 56.4 and 147.7 mg/L, 72 h of exposure, respectively). The effect of LC25 (117.1 mg/L) of Co-Cd-Fe LDHs exposure on the embryo showed suppression of embryonic development and induced embryo malformation. Also, it showed alterations in the tegmental architectures of the mantle-foot region of B. alexandrina snails as declared in scanning electron micrograph. Also, exposure to this sublethal concentration caused abnormalities in hemocyte shapes and upregulated IL-2 level in soft tissue. In addition, it decreased levels of nonenzymatic reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), caspase-3 activity, and total protein content in significant manner. Glutathione S-transferase (GST) activity was not affected by LDH exposure. It caused histopathological damages in both glands of snails and also caused a genotoxic effect in their cells. The results from the present study indicated that LDH has risk assessment on aquatic B. alexandrina snails and that it can be used as a biological indicator of water pollution with LDH.

Keywords: B. alexandrina; Biomarker; Commet assay; LDH; Toxicity.

PubMed Disclaimer

References

    1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126 - DOI
    1. Ali D (2014) Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L. Biol Trace Elem Res 162:333–341 - DOI
    1. Ali D, Alarifi S, Kumar S, Ahamed M, Siddiqui MA (2012) Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat Toxicol 124:83–90 - DOI
    1. Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L (2019) Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. Sci Total Environ 669:11–28 - DOI
    1. Atli G, Grosell M (2016) Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure. Aquat Toxicol 176:38–44. https://doi.org/10.1016/j.aquatox.2016.04.007 - DOI

LinkOut - more resources