Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;66(2):139-150.
doi: 10.23736/S0390-5616.21.05483-7. Epub 2021 Sep 21.

Artificial intelligence-enhanced intraoperative neurosurgical workflow: current knowledge and future perspectives

Affiliations

Artificial intelligence-enhanced intraoperative neurosurgical workflow: current knowledge and future perspectives

Leonardo Tariciotti et al. J Neurosurg Sci. 2022 Apr.

Abstract

Introduction: Artificial intelligence (AI) and machine learning (ML) augment decision-making processes and productivity by supporting surgeons over a range of clinical activities: from diagnosis and preoperative planning to intraoperative surgical assistance. We reviewed the literature to identify current AI platforms applied to neurosurgical perioperative and intraoperative settings and describe their role in multiple subspecialties.

Evidence acquisition: A systematic review of the literature was conducted following the PRISMA guidelines. PubMed, EMBASE, and Scopus databases were searched from inception to December 31st, 2020. Original articles were included if they: presented AI platforms implemented in perioperative, intraoperative settings and reported ML models' performance metrics. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed appropriate. The risk of bias and applicability of predicted outcomes were assessed using the PROBAST tool.

Evidence synthesis: Forty-one articles were included. All studies evaluated a supervised learning algorithm. A total of 10 ML models were described; the most frequent were neural networks (N.=15) and tree-based models (N.=13). Overall, the risk of bias was medium-high, but applicability was considered positive for all studies. Articles were grouped into four categories according to the subspecialty of interest: neuro-oncology, spine, functional and other. For each category, different prediction tasks were identified.

Conclusions: In this review, we summarize the state-of-art applications of AI for the intraoperative augmentation of neurosurgical workflows across multiple subspecialties. ML models may boost surgical team performances by reducing human errors and providing patient-tailored surgical plans, but further and higher-quality studies need to be conducted.

PubMed Disclaimer

Publication types

LinkOut - more resources