Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun;34(3):482-494.
doi: 10.1080/10495398.2021.1975729. Epub 2021 Sep 22.

CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression

Affiliations
Free article

CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression

Yubo Zhu et al. Anim Biotechnol. 2023 Jun.
Free article

Abstract

Circular RNAs (circRNAs), a novel class of non-coding RNAs, can interact with miRNAs through a sequence-driven sponge mechanism, thereby regulating the expression of their downstream target genes. CircRNA-1967 was found in secondary hair follicles (SHFs) of cashmere goats, but its functions are not clear. Here, we showed that both circRNA-1967 and its host gene BNC2 had significantly higher expression in SHF bulge at anagen than those at telogen of cashmere goats. Also, circRNA-1967 participates in the differentiation of SHF stem cells (SHF-SCs) into hair follicle lineage in cashmere goats. RNA pull-down assay verified that circRNA-1967 interacts with miR-93-3p. We also indicated that circRNA-1967 promoted LEF1 expression in SHF-SCs of cashmere goats. By dual-luciferase reporter analysis, we found that circRNA-1967 up-regulated LEF1 expression through the miR-93-3p-mediated pathway. The results from this study demonstrated that circRNA-1967 participated in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Our founding might constitute a novel pathway for revealing the potential mechanism of the differentiation of SHF-SCs into hair follicle lineage in cashmere goats. Also, these results provided a valuable basis for further enhancing the intrinsic regeneration of cashmere goat SHFs with the formation and growth of cashmere fibers.

Keywords: CircRNAs; MiRNAs; SHF-SC; cashmere goats; differentiation.

PubMed Disclaimer

LinkOut - more resources