Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere
- PMID: 34550975
- PMCID: PMC8457463
- DOI: 10.1371/journal.pone.0257017
Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere
Abstract
Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Brittain SM, Wang J, Babcock-Jackson L, Carmichael WW, Rinehart KL, Culver DA. Isolation and characterization of microcystins, cyclic heptapeptide hepatotoxins from a Lake Erie Strain of Microcystis aeruginosa. J Gt Lakes Res. 2000;26: 241–249. doi: 10.1016/S0380-1330(00)70690-3 - DOI
-
- Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, et al.. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae Glob Expans Harmful Cyanobacterial Blooms Divers Ecol Causes Controls. 2016;54: 4–20. doi: 10.1016/j.hal.2015.12.007 - DOI - PubMed
-
- Steffen MM, Davis TW, McKay RM, Bullerjahn GS, Krausfeldt LE, Stough JMA, et al.. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: Linkages between biology and the water supply shutdown of Toledo, OH. Environ Sci Technol. 2017;51: 6745–6755. doi: 10.1021/acs.est.7b00856 - DOI - PubMed
-
- Visser PM, Ibelings BW, Bormans M, Huisman J. Artificial mixing to control cyanobacterial blooms: a review. Aquat Ecol. 2016;50: 423–441.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
