Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO2 for Efficient Photocatalytic Conversion of CO2 to CH4
- PMID: 34555906
- DOI: 10.1021/acsami.1c14371
Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO2 for Efficient Photocatalytic Conversion of CO2 to CH4
Abstract
Photocatalytic reduction of CO2 toward eight-electron CH4 product with simultaneously high conversion efficiency and selectivity remains great challenging owing to the sluggish charge separation and transfer kinetics and lack of active sites for the adsorption and activation of reactants. Herein, a defective TiO2 nanosheet photocatalyst simultaneously equipped with AuCu alloy co-catalyst and oxygen vacancies (AuCu-TiO2-x NSs) was rationally designed and fabricated for the selective conversion of CO2 into CH4. The experimental results demonstrated that the AuCu alloy co-catalyst not only effectively promotes the separation of photogenerated electron-hole pairs but also acts as synergistic active sites for the reduction of CO2. The oxygen vacancies in TiO2 contribute to the separation of charge carriers and, more importantly, promote the oxidation of H2O, thus providing rich protons to promote the deep reduction of CO2 to CH4. Consequently, the optimal AuCu-TiO2-x nanosheets (NSs) photocatalyst achieves a CO2 reduction selectivity toward CH4 up to 90.55%, significantly higher than those of TiO2-x NSs (31.82%), Au-TiO2-x NSs (38.74%), and Cu-TiO2-x NSs (66.11%). Furthermore, the CH4 evolution rate over the AuCu-TiO2-x NSs reaches 22.47 μmol·g-1·h-1, which is nearly twice that of AuCu-TiO2 NSs (12.10 μmol·g-1·h-1). This research presents a unique insight into the design and synthesis of photocatalyst with oxygen vacancies and alloy metals as the co-catalyst for the highly selective deep reduction of CO2.
Keywords: AuCu alloys; CO2 photoreduction; TiO2 nanosheet; oxygen vacancies; synergistic effect.
Similar articles
-
Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: Synergy of Ru and oxygen vacancies.J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):2809-2819. doi: 10.1016/j.jcis.2021.11.011. Epub 2021 Nov 6. J Colloid Interface Sci. 2022. PMID: 34785050
-
One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO2 Quasi-Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4.Chemphyschem. 2017 Nov 17;18(22):3230-3239. doi: 10.1002/cphc.201700563. Epub 2017 Aug 15. Chemphyschem. 2017. PMID: 28719067
-
Advantageous Role of Ir0 Supported on TiO2 Nanosheets in Photocatalytic CO2 Reduction to CH4: Fast Electron Transfer and Rich Surface Hydroxyl Groups.ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6219-6228. doi: 10.1021/acsami.0c19233. Epub 2021 Jan 26. ACS Appl Mater Interfaces. 2021. PMID: 33499601
-
Recent Advances in TiO2-Based Heterojunctions for Photocatalytic CO2 Reduction With Water Oxidation: A Review.Front Chem. 2021 Apr 15;9:637501. doi: 10.3389/fchem.2021.637501. eCollection 2021. Front Chem. 2021. PMID: 33937191 Free PMC article. Review.
-
Lead-Free Halide Perovskite Cs2AgBiBr6/Bismuthene Composites for Improved CH4 Production in Photocatalytic CO2 Reduction.ACS Appl Energy Mater. 2023 Feb 1;6(20):10193-10204. doi: 10.1021/acsaem.2c03105. eCollection 2023 Oct 23. ACS Appl Energy Mater. 2023. PMID: 37886225 Free PMC article. Review.
Cited by
-
Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions.Energy Fuels. 2023 May 16;37(11):7577-7602. doi: 10.1021/acs.energyfuels.3c00714. eCollection 2023 Jun 1. Energy Fuels. 2023. PMID: 37283706 Free PMC article. Review.
-
Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2.Nat Commun. 2024 Mar 18;15(1):2422. doi: 10.1038/s41467-024-46745-3. Nat Commun. 2024. PMID: 38499562 Free PMC article.
-
Hydrogen Production via Electrolysis of Wastewater.Nanomaterials (Basel). 2024 Mar 25;14(7):567. doi: 10.3390/nano14070567. Nanomaterials (Basel). 2024. PMID: 38607103 Free PMC article. Review.
-
Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts.Chemistry. 2023 Feb 10;29(9):e202203387. doi: 10.1002/chem.202203387. Epub 2023 Jan 13. Chemistry. 2023. PMID: 36524615 Free PMC article. Review.
-
Atomically Precise Pd Species Accelerating CO2 Hydrodeoxygenation into CH4 with 100% Selectivity.Precis Chem. 2023 Oct 19;1(9):530-537. doi: 10.1021/prechem.3c00086. eCollection 2023 Nov 27. Precis Chem. 2023. PMID: 40881832 Free PMC article.
LinkOut - more resources
Full Text Sources