Literature Mining and Mechanistic Graphical Modelling to Improve mRNA Vaccine Platforms
- PMID: 34557200
- PMCID: PMC8454234
- DOI: 10.3389/fimmu.2021.738388
Literature Mining and Mechanistic Graphical Modelling to Improve mRNA Vaccine Platforms
Abstract
RNA vaccines represent a milestone in the history of vaccinology. They provide several advantages over more traditional approaches to vaccine development, showing strong immunogenicity and an overall favorable safety profile. While preclinical testing has provided some key insights on how RNA vaccines interact with the innate immune system, their mechanism of action appears to be fragmented amid the literature, making it difficult to formulate new hypotheses to be tested in clinical settings and ultimately improve this technology platform. Here, we propose a systems biology approach, based on the combination of literature mining and mechanistic graphical modeling, to consolidate existing knowledge around mRNA vaccines mode of action and enhance the translatability of preclinical hypotheses into clinical evidence. A Natural Language Processing (NLP) pipeline for automated knowledge extraction retrieved key biological evidences that were joined into an interactive mechanistic graphical model representing the chain of immune events induced by mRNA vaccines administration. The achieved mechanistic graphical model will help the design of future experiments, foster the generation of new hypotheses and set the basis for the development of mathematical models capable of simulating and predicting the immune response to mRNA vaccines.
Keywords: graphical modeling; mRNA vaccines; mechanisms of action; natural language processing; scientific literature mining.
Copyright © 2021 Leonardelli, Lofano, Selvaggio, Parolo, Giampiccolo, Tomasoni, Domenici, Priami, Song, Medini, Marchetti and Siena.
Conflict of interest statement
GL, HS, DM, and ES were all employees of the GSK group of companies at the time of the study. The “Fondazione The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI)” institute received financial remuneration for conducting the activates described in this study. The authors declare that this study received funding from GlaxoSmithKline Biologicals SA. The funder had the following involvement in the study: study design, interpretation of data, the writing of this article and the decision to submit it for publication. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
