Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions
- PMID: 34557716
- PMCID: PMC8454671
- DOI: 10.1016/j.xinn.2020.100051
Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions
Abstract
Surface enhanced Raman scattering (SERS) is a fingerprint spectral technique whose performance is highly dependent on the physicochemical properties of the substrate materials. In addition to the traditional plasmonic metal substrates that feature prominent electromagnetic enhancements, boosted SERS activities have been reported recently for various categories of non-metal materials, including graphene, MXenes, transition-metal chalcogens/oxides, and conjugated organic molecules. Although the structural compositions of these semiconducting substrates vary, chemical enhancements induced by interfacial charge transfer are often the major contributors to the overall SERS behavior, which is distinct from that of the traditional SERS based on plasmonic metals. Regarding charge-transfer-induced SERS enhancements, this short review introduces the basic concepts underlying the SERS enhancements, the most recent semiconducting substrates that use novel manipulation strategies, and the extended applications of these versatile substrates.
Keywords: SERS; charge transfer; chemical mechanism; defect engineering; semiconductor.
© 2020 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures









Similar articles
-
Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).Front Chem. 2019 Aug 20;7:582. doi: 10.3389/fchem.2019.00582. eCollection 2019. Front Chem. 2019. PMID: 31482089 Free PMC article.
-
Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.ACS Appl Mater Interfaces. 2021 Nov 3;13(43):51618-51627. doi: 10.1021/acsami.1c11977. Epub 2021 Oct 21. ACS Appl Mater Interfaces. 2021. PMID: 34674528
-
Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.ACS Appl Mater Interfaces. 2023 May 10;15(18):22730-22736. doi: 10.1021/acsami.3c02160. Epub 2023 Apr 26. ACS Appl Mater Interfaces. 2023. PMID: 37125659
-
Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.Chemphyschem. 2016 Sep 5;17(17):2630-9. doi: 10.1002/cphc.201600286. Epub 2016 Jun 28. Chemphyschem. 2016. PMID: 27191682 Review.
-
Recent advances in semiconductor nanostructure-based surface-enhanced Raman scattering sensors.Nanotechnology. 2025 Apr 25;36(20). doi: 10.1088/1361-6528/adcbaf. Nanotechnology. 2025. PMID: 40215997 Review.
Cited by
-
Balance between FeIV-NiIV synergy and Lattice Oxygen Contribution for Accelerating Water Oxidation.ACS Nano. 2024 Jun 4;18(22):14496-14506. doi: 10.1021/acsnano.4c01718. Epub 2024 May 21. ACS Nano. 2024. PMID: 38771969 Free PMC article.
-
Self-assembled core-shell nanoparticles with embedded internal standards for SERS quantitative detection and identification of nicotine released from snus products.Front Chem. 2024 Mar 27;12:1348423. doi: 10.3389/fchem.2024.1348423. eCollection 2024. Front Chem. 2024. PMID: 38601887 Free PMC article.
-
Optical Bionanosensors for Sepsis Diagnostics.Small. 2025 Feb;21(8):e2409042. doi: 10.1002/smll.202409042. Epub 2025 Jan 2. Small. 2025. PMID: 39745136 Free PMC article. Review.
-
Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques.Biosensors (Basel). 2025 Jun 20;15(7):401. doi: 10.3390/bios15070401. Biosensors (Basel). 2025. PMID: 40710051 Free PMC article. Review.
-
VSe2-x O x @Pd Sensor for Operando Self-Monitoring of Palladium-Catalyzed Reactions.JACS Au. 2023 Jan 16;3(2):468-475. doi: 10.1021/jacsau.2c00596. eCollection 2023 Feb 27. JACS Au. 2023. PMID: 36873688 Free PMC article.
References
-
- Fleischmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974;26:163–166.
-
- Jeanmaire D.L., Van Duyne R.P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977;84:1–20.
-
- Alessandri I., Lombardi J.R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016;116:14921–14981. - PubMed
-
- Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 2014;53:4756–4795. - PubMed
-
- Ding S.Y., Yi J., Li J.-F., et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016;1:16021–16037.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous