Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022:2389:177-199.
doi: 10.1007/978-1-0716-1783-0_15.

Generating Cerebral Organoids from Human Pluripotent Stem Cells

Affiliations

Generating Cerebral Organoids from Human Pluripotent Stem Cells

Leon Chew et al. Methods Mol Biol. 2022.

Abstract

3D brain organoids derived from human pluripotent stem cells (hPSCs) possess the remarkable ability to self-organize and differentiate into tissue resembling the early human fetal brain. Brain organoids provide a powerful tool for studying human brain development and disease in an in vitro system. Here we describe a protocol for the differentiation of hPSCs to human cerebral organoids using a commercially available kit (STEMdiff™ Cerebral Organoid Kit) and discuss methods to scale up the protocol in a high-throughput manner.

Keywords: Brain; In vitro; Neural differentiation; Neurodevelopment; Organoid; Stem cells; Three-dimensional.

PubMed Disclaimer

References

    1. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125 - PubMed - DOI - PMC
    1. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8:288–296 - PubMed - DOI - PMC
    1. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532 - PubMed - DOI - PMC
    1. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56 - PubMed - DOI - PMC
    1. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785 - PubMed - DOI - PMC

LinkOut - more resources