Crystalline Covalent Organic Frameworks with Tailored Linkages for Photocatalytic H2 Evolution
- PMID: 34558794
- DOI: 10.1002/cssc.202101625
Crystalline Covalent Organic Frameworks with Tailored Linkages for Photocatalytic H2 Evolution
Abstract
Crystalline covalent organic frameworks (COFs) are porous polymeric semiconductors with network topologies, which are built from the integration of selected organic blocks with covalent bond linkages. They have shown great promise for artificial photosynthesis, owing to broad light harvesting, high crystallinity, and high carrier mobility. This Minireview introduces state-of-the-art COF photocatalysts based on different linkages and discusses the origin of photocatalytic activities for hydrogen evolution. Three typical COF photocatalysts, with linkages including imine (-C=N-), β-ketoenamine (O=C-C=C-NH-), and vinylene (-C=C-), are discussed with a particular focus on the advancements in synthetic methodologies and structural design, as well as photoelectronic properties that are relevant to photocatalytic performance. The Minireview is expected to elucidate their structure-property relationships and the way to design photoactive COFs with enhanced performances.
Keywords: covalent organic frameworks; hydrogen; photocatalysis; porous materials; tailor-made structures.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis.J Am Chem Soc. 2020 Mar 11;142(10):4862-4871. doi: 10.1021/jacs.0c00054. Epub 2020 Feb 28. J Am Chem Soc. 2020. PMID: 32073853
-
Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution: Design, Strategy, and Structure-to-Performance Relationship.Macromol Rapid Commun. 2023 Jun;44(11):e2200719. doi: 10.1002/marc.202200719. Epub 2022 Oct 21. Macromol Rapid Commun. 2023. PMID: 36222274 Review.
-
Activation of Carbonyl Oxygen Sites in β-Ketoenamine-Linked Covalent Organic Frameworks via Cyano Conjugation for Efficient Photocatalytic Hydrogen Evolution.Small. 2021 Jun;17(24):e2101017. doi: 10.1002/smll.202101017. Epub 2021 May 12. Small. 2021. PMID: 33979001
-
Isomeric Oligo(Phenylenevinylene)-Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities.Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202216073. doi: 10.1002/anie.202216073. Epub 2022 Dec 22. Angew Chem Int Ed Engl. 2023. PMID: 36450661
-
Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis.Adv Mater. 2023 Jun;35(24):e2209475. doi: 10.1002/adma.202209475. Epub 2023 Apr 11. Adv Mater. 2023. PMID: 36563668 Review.
Cited by
-
A superlattice interface and S-scheme heterojunction for ultrafast charge separation and transfer in photocatalytic H2 evolution.Nat Commun. 2024 Nov 7;15(1):9612. doi: 10.1038/s41467-024-53951-6. Nat Commun. 2024. PMID: 39511168 Free PMC article.
-
Enhanced photocatalytic H2 evolution over covalent organic frameworks through an assembled NiS cocatalyst.RSC Adv. 2022 May 18;12(23):14932-14938. doi: 10.1039/d2ra02236b. eCollection 2022 May 12. RSC Adv. 2022. PMID: 35702250 Free PMC article.
-
Zn (II) Porphyrin Built-in D-A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution.Polymers (Basel). 2022 Nov 13;14(22):4893. doi: 10.3390/polym14224893. Polymers (Basel). 2022. PMID: 36433020 Free PMC article.
References
-
- A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
-
- S. C. Silver, J. Niklas, P. Du, O. G. Poluektov, D. M. Tiede, L. M. Utschig, J. Am. Chem. Soc. 2013, 135, 13246-13249.
-
- None
-
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80;
-
- G. Zhang, Z.-A. Lan, X. Wang, Angew. Chem. 2016, 55, 15712-15727.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources