Interactions between dietary polyphenols and aging gut microbiota: A review
- PMID: 34559427
- DOI: 10.1002/biof.1785
Interactions between dietary polyphenols and aging gut microbiota: A review
Abstract
Aging induces significant shifts in the composition of gut microbiota associated with decreased microbial diversity. Age-related changes in gut microbiota include a loss of commensals and an increase in disease-associated pathobionts. These alterations are accelerated by lifestyle factors, such as poor nutritional habits, physical inactivity, and medications. Given that diet is one of the main drivers shaping the gut microbiota, nutritional interventions for restoring gut homeostasis are of great importance to the overall health of older adults. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as promising anti-aging candidates because of their ability to modulate some of the common denominators of aging, including gut dysbiosis. These compounds can influence the composition of the gut microbiota, and gut bacteria metabolize polyphenols into bioactive compounds that produce relevant health effects. Although the role of polyphenols on the aging gut has not been fully characterized, accumulating evidence suggests that these compounds exert selective effects on the gut microbial community. Here, we discuss the reciprocal interactions between polyphenols and gut microbiota and summarize the latest findings on the effects of polyphenols on modulating intestinal bacteria during aging.
Keywords: aging; gut; microbiota; polyphenols.
© 2021 International Union of Biochemistry and Molecular Biology.
References
REFERENCES
-
- Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231-46.
-
- Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr. 2005;45:287-306.
-
- Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes. 2015;64:2847-58.
-
- Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact on human health. Nutrients. 2020;12:1-16.
-
- Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491-502.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
