Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan;100(1):99-128.
doi: 10.1002/jnr.24949. Epub 2021 Sep 24.

Differential barcoding of opioid receptors trafficking

Affiliations
Review

Differential barcoding of opioid receptors trafficking

Jade Degrandmaison et al. J Neurosci Res. 2022 Jan.

Abstract

Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.

Keywords: G protein-coupled receptors; motif; nociceptin receptor; opioid receptors; post-translational modification; trafficking.

PubMed Disclaimer

References

REFERENCES

    1. Abdallah, K., & Gendron, L. (2018). The delta opioid receptor in pain control. Handbook of Experimental Pharmacology, 247, 147-177.
    1. Arvidsson, U., Dado, R. J., Riedl, M., Lee, J. H., Law, P. Y., Loh, H. H., Elde, R., & Wessendorf, M. W. (1995). δ-Opioid receptor immunoreactivity: Distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. Journal of Neuroscience, 15, 1215-1235.
    1. Bannert, N., Craig, S., Farzan, M., Sogah, D., Santo, N. V., Choe, H., & Sodroski, J. (2001). Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. Journal of Experimental Medicine, 194, 1661-1673.
    1. Barak, L. S., Tiberi, M., Freedman, N. J., Kwatra, M. M., Lefkowitz, R. J., & Caron, M. G. (1994). A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated β2-adrenergic receptor sequestration. Journal of Biological Chemistry, 269, 2790-2795.
    1. Bartlett, S. E., Enquist, J., Hopf, F. W., Lee, J. H., Gladher, F., Kharazia, V., Waldhoer, M., Mailliard, W. S., Armstrong, R., Bonci, A., & Whistler, J. L. (2005). Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proceedings of the National Academy of Sciences of the United States of America, 102, 11521-11526.

Publication types

Grants and funding