Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 15:430:118074.
doi: 10.1016/j.jns.2021.118074. Epub 2021 Sep 13.

IgG regulation through FcRn blocking: A novel mechanism for the treatment of myasthenia gravis

Affiliations
Free article
Review

IgG regulation through FcRn blocking: A novel mechanism for the treatment of myasthenia gravis

Gil I Wolfe et al. J Neurol Sci. .
Free article

Abstract

The neonatal Fc receptor (FcRn) is an MHC class I-like molecule that is widely distributed in mammalian organs, tissues, and cells. FcRn is critical to maintaining immunoglobulin G (IgG) and albumin levels through rescuing these molecules from lysosomal degradation. IgG autoantibodies are associated with many autoimmune diseases, including myasthenia gravis (MG), a rare neuromuscular autoimmune disease that causes debilitating and, in its generalized form (gMG), potentially life-threatening muscle weakness. IgG autoantibodies are directly pathogenic in MG and target neuromuscular junction proteins, causing neuromuscular transmission failure. Treatment approaches that reduce autoantibody levels, such as therapeutic plasma exchange and intravenous immunoglobulin, have been shown to be effective for gMG patients but are not indicated as ongoing maintenance therapies and can be associated with burdensome side effects. Agents that block FcRn-mediated recycling of IgG represent a rational and promising approach for the treatment of gMG. Blocking FcRn allows targeted reduction of all IgG subtypes without decreasing concentrations of other Ig isotypes; therefore, FcRn blocking could be a safe and effective treatment strategy for a broad population of gMG patients. Several FcRn-blocking antibodies and one antibody Fc fragment have been developed and are currently in various stages of clinical development. This article describes the mechanism of FcRn blockade as a novel approach for IgG-mediated disease therapy and reviews promising clinical data using such FcRn blockers for the treatment of gMG.

Keywords: Autoimmune disease; Clinical neurology; Clinical trials; Myasthenia; Neuromuscular disease.

PubMed Disclaimer