Obtaining Precise Molecular Information via DNA Nanotechnology
- PMID: 34564500
- PMCID: PMC8466356
- DOI: 10.3390/membranes11090683
Obtaining Precise Molecular Information via DNA Nanotechnology
Abstract
Precise characterization of biomolecular information such as molecular structures or intermolecular interactions provides essential mechanistic insights into the understanding of biochemical processes. As the resolution of imaging-based measurement techniques improves, so does the quantity of molecular information obtained using these methodologies. DNA (deoxyribonucleic acid) molecule have been used to build a variety of structures and dynamic devices on the nanoscale over the past 20 years, which has provided an accessible platform to manipulate molecules and resolve molecular information with unprecedented precision. In this review, we summarize recent progress related to obtaining precise molecular information using DNA nanotechnology. After a brief introduction to the development and features of structural and dynamic DNA nanotechnology, we outline some of the promising applications of DNA nanotechnology in structural biochemistry and in molecular biophysics. In particular, we highlight the use of DNA nanotechnology in determination of protein structures, protein-protein interactions, and molecular force.
Keywords: DNA nanotechnology; cryo-EM; molecular forces; protein–protein interactions; single-molecule techniques; structural reconstruction.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Hellenkamp B., Schmid S., Doroshenko O., Opanasyuk O., Kühnemuth R., Rezaei Adariani S., Ambrose B., Aznauryan M., Barth A., Birkedal V., et al. Precision and accuracy of single-molecule FRET measurements—Multi-laboratory benchmark study. Nat. Methods. 2018;15:669–676. doi: 10.1038/s41592-018-0085-0. - DOI - PMC - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
