Eliminating viscosity bias in lateral flow tests
- PMID: 34567784
- PMCID: PMC8433459
- DOI: 10.1038/s41378-021-00296-5
Eliminating viscosity bias in lateral flow tests
Abstract
Despite the widespread application of point-of-care lateral flow tests, the viscosity dependence of these assay results remains a significant challenge. Here, we employ centrifugal microfluidic flow control through the nitrocellulose membrane of the strip to eliminate the viscosity bias. The key feature is the balancing of the sample flow into the cassette of the lateral flow test with the air flow out of the cassette. A viscosity-independent flow rate of 3.01 ± 0.18 µl/min (±6%) is demonstrated for samples with viscosities ranging from 1.1 mPas to 24 mPas, a factor greater than 20. In a model human IgG lateral flow assay, signal-intensity shifts caused by varying the sample viscosity from 1.1 mPas to 2.3 mPas could be reduced by more than 84%.
Keywords: Engineering; Physics.
© The Author(s) 2021.
Conflict of interest statement
Conflict of interestThe authors declare the following competing financial interests: N.P., D.K., and S.F. filed a patent based on these results.
Figures





References
-
- Nicol T, et al. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech) J. Clin. Virol. 2020;129:104511. doi: 10.1016/j.jcv.2020.104511. - DOI - PMC - PubMed