Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages
- PMID: 34572013
- PMCID: PMC8464913
- DOI: 10.3390/cells10092364
Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages
Abstract
Macrophages are found in all tissues and display outstanding functional diversity. From embryo to birth and throughout adult life, they play critical roles in development, homeostasis, tissue repair, immunity, and, importantly, in the control of cancer growth. In this review, we will briefly detail the multi-functional, protumoral, and antitumoral roles of macrophages in the tumor microenvironment. Our objective is to focus on the ever-growing therapeutic opportunities, with promising preclinical and clinical results developed in recent years, to modulate the contribution of macrophages in oncologic diseases. While the majority of cancer immunotherapies target T cells, we believe that macrophages have a promising therapeutic potential as tumoricidal effectors and in mobilizing their surroundings towards antitumor immunity to efficiently limit cancer progression.
Keywords: antitumor functions; macrophages; myeloid-targeted therapies; reprogramming.
Conflict of interest statement
The authors declare no potential conflict of interest.
Figures



Similar articles
-
Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy.Front Immunol. 2018 Oct 8;9:2250. doi: 10.3389/fimmu.2018.02250. eCollection 2018. Front Immunol. 2018. PMID: 30349530 Free PMC article. Review.
-
Progress in tumor-associated macrophage (TAM)-targeted therapeutics.Adv Drug Deliv Rev. 2017 May 15;114:206-221. doi: 10.1016/j.addr.2017.04.010. Epub 2017 Apr 25. Adv Drug Deliv Rev. 2017. PMID: 28449873 Free PMC article. Review.
-
Myeloid effector cells in cancer.Cancer Cell. 2024 Dec 9;42(12):1997-2014. doi: 10.1016/j.ccell.2024.11.002. Cancer Cell. 2024. PMID: 39658540
-
Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses.Cells. 2019 Dec 23;9(1):46. doi: 10.3390/cells9010046. Cells. 2019. PMID: 31878087 Free PMC article. Review.
-
Obstacles to T cell migration in the tumor microenvironment.Comp Immunol Microbiol Infect Dis. 2019 Apr;63:22-30. doi: 10.1016/j.cimid.2018.12.006. Epub 2018 Dec 27. Comp Immunol Microbiol Infect Dis. 2019. PMID: 30961814
Cited by
-
Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy.Cell Rep Med. 2024 Jul 16;5(7):101626. doi: 10.1016/j.xcrm.2024.101626. Epub 2024 Jun 28. Cell Rep Med. 2024. PMID: 38944037 Free PMC article. Review.
-
Phagocytosis-Regulators-Based Signature to Predict the Prognosis and Chemotherapy Resistance for Breast Cancer Patients.Int J Mol Sci. 2022 Sep 7;23(18):10312. doi: 10.3390/ijms231810312. Int J Mol Sci. 2022. PMID: 36142251 Free PMC article.
-
Difference between sentinel and non-sentinel lymph nodes in the distribution of dendritic cells and macrophages: An immunohistochemical and morphometric study using gastric regional nodes obtained in sentinel node navigation surgery for early gastric cancer.J Anat. 2025 Feb;246(2):272-287. doi: 10.1111/joa.14147. Epub 2024 Oct 5. J Anat. 2025. PMID: 39367691 Free PMC article.
-
Exploring the Expression of Adenosine Pathway-Related Markers CD73 and CD39 in Colorectal and Pancreatic Carcinomas Characterized by Multiplex Immunofluorescence: A Pilot Study.Pathobiology. 2024;91(3):205-218. doi: 10.1159/000534677. Epub 2023 Nov 3. Pathobiology. 2024. PMID: 37926083 Free PMC article.
-
Antibody-Mediated LILRB2-Receptor Antagonism Induces Human Myeloid-Derived Suppressor Cells to Kill Mycobacterium tuberculosis.Front Immunol. 2022 Jun 10;13:865503. doi: 10.3389/fimmu.2022.865503. eCollection 2022. Front Immunol. 2022. PMID: 35757769 Free PMC article.
References
-
- Gautier E.L., Shay T., Miller J., Greter M., Jakubzick C., Ivanov S., Helft J., Chow A., Elpek K.G., Gordonov S., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012;13:1118–1128. doi: 10.1038/ni.2419. - DOI - PMC - PubMed
-
- Odegaard J.I., Ricardo-Gonzalez R.R., Red Eagle A., Vats D., Morel C.R., Goforth M.H., Subramanian V., Mukundan L., Ferrante A.W., Chawla A. Alternative M2 Activation of Kupffer Cells by PPARδ Ameliorates Obesity-Induced Insulin Resistance. Cell Metab. 2008;7:496–507. doi: 10.1016/j.cmet.2008.04.003. - DOI - PMC - PubMed
-
- Nicolás-Ávila J.A., Lechuga-Vieco A.V., Esteban-Martínez L., Sánchez-Díaz M., Díaz-García E., Santiago D.J., Rubio-Ponce A., Li J.L.Y., Balachander A., Quintana J.A., et al. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell. 2020;183:94–109.e23. doi: 10.1016/j.cell.2020.08.031. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical