Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep 15;22(18):9971.
doi: 10.3390/ijms22189971.

Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization

Affiliations
Review

Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization

Matteo Ferro et al. Int J Mol Sci. .

Abstract

Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.

Keywords: MRI; PET-CT; genomics; molecular characterization; prostate cancer; radiogenomics; radiomics.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Research flowchart for identification of related articles.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654. - DOI - PubMed
    1. Ferro M., De Cobelli O., Lucarelli G., Porreca A., Busetto G.M., Cantiello F., Damiano R., Autorino R., Musi G., Vartolomei M.D., et al. Beyond PSA: The Role of Prostate Health Index (Phi) Int. J. Mol. Sci. 2020;21:1184. doi: 10.3390/ijms21041184. - DOI - PMC - PubMed
    1. Mottet N., van den Bergh R.C.N., Briers E., Van den Broeck T., Cumberbatch M.G., De Santis M., Fanti S., Fossati N., Gandaglia G., Gillessen S., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021;79:243–262. doi: 10.1016/j.eururo.2020.09.042. - DOI - PubMed
    1. Cornford P., van den Bergh R.C.N., Briers E., Van den Broeck T., Cumberbatch M.G., De Santis M., Fanti S., Fossati N., Gandaglia G., Gillessen S., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021;79:263–282. doi: 10.1016/j.eururo.2020.09.046. - DOI - PubMed