Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Sep 14;9(9):1021.
doi: 10.3390/vaccines9091021.

Recent and Future Advances in the Chemoenzymatic Synthesis of Homogeneous Glycans for Bacterial Glycoconjugate Vaccine Development

Affiliations
Review

Recent and Future Advances in the Chemoenzymatic Synthesis of Homogeneous Glycans for Bacterial Glycoconjugate Vaccine Development

Ayobami Adegbite et al. Vaccines (Basel). .

Abstract

Vaccines are important in preventing disease outbreaks and controlling the spread of disease in a population. A variety of vaccines exist, including subunit, recombinant, and conjugate vaccines. Glycoconjugate vaccines have been an important tool to fight against diseases caused by a number of bacteria. Glycoconjugate vaccines are often heterogeneous. Vaccines of the future are becoming more rationally designed to have a defined oligosaccharide chain length and position of conjugation. Homogenous vaccines could play an important role in assessing the relationship between vaccine structure and immune response. This review focuses on recent advances in the chemoenzymatic production of defined bacterial oligosaccharides for vaccine development with a focus on Neisseria meningitidis and selected WHO-prioritized antibacterial resistant-pathogens. We also provide some perspective on future advances in the chemoenzymatic synthesis of well-defined oligosaccharides.

Keywords: bacterial pathogens; chemoenzymatic synthesis; glycoconjugate vaccines.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Monosaccharide units of N. meningitidis serogroup polysaccharides discussed in this review. (A) serogroup X; (B) serogroup A; (C) serogroup C; (D) serogroup W.
Figure 2
Figure 2
Glycoconjugate of ManAra3-rHSA. Reprinted from Li, Z.; Bavaro, T.; Tengattini, S.; Bernardini, R.; Mattei, M.; Annunziata, F.; Cole, R.B.; Zheng, C.; Sollogoub, M.; Tamborini, L., et al. Chemoenzymatic synthesis of arabinomannan (am) glycoconjugates as potential vaccines for tuberculosis. Eur J Med Chem 2020, 204, 11257 with permission from Elsevier [47].
Figure 3
Figure 3
Quantification of the relative abundance of each K2 glycoform in K2-EPA. From Feldman et al. Ref. [53].

References

    1. Rodrigues C.M.C., Plotkin S.A. Impact of vaccines; health, economic and social perspectives. Front. Microbiol. 2020;11:1526. doi: 10.3389/fmicb.2020.01526. - DOI - PMC - PubMed
    1. Plotkin S. History of vaccination. Proc. Natl. Acad. Sci. USA. 2014;111:12283–12287. doi: 10.1073/pnas.1400472111. - DOI - PMC - PubMed
    1. Forni G., Mantovani A. COVID-19 vaccines: Where we stand and challenges ahead. Cell Death Differ. 2021;28:626–639. doi: 10.1038/s41418-020-00720-9. - DOI - PMC - PubMed
    1. Iwasaki A., Omer S.B. Why and how vaccines work. Cell. 2020;183:290–295. doi: 10.1016/j.cell.2020.09.040. - DOI - PMC - PubMed
    1. Avci F.Y., Li X., Tsuji M., Kasper D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011;17:1602–1609. doi: 10.1038/nm.2535. - DOI - PMC - PubMed

LinkOut - more resources