Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial
- PMID: 34581796
- PMCID: PMC8479585
- DOI: 10.1001/jamanetworkopen.2021.26313
Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial
Abstract
Importance: Nonnutritive sweeteners (NNSs) are used as an alternative to nutritive sweeteners to quench desire for sweets while reducing caloric intake. However, studies have shown mixed results concerning the effects of NNSs on appetite, and the associations between sex and obesity with reward and appetitive responses to NNS compared with nutritive sugar are unknown.
Objective: To examine neural reactivity to different types of high-calorie food cues (ie, sweet and savory), metabolic responses, and eating behavior following consumption of sucralose (NNS) vs sucrose (nutritive sugar) among healthy young adults.
Design, setting, and participants: In a randomized, within-participant, crossover trial including 3 separate visits, participants underwent a functional magnetic resonance imaging task measuring blood oxygen level-dependent signal in response to visual cues. For each study visit, participants arrived at the Dornsife Cognitive Neuroimaging Center of University of Southern California at approximately 8:00 am after a 12-hour overnight fast. Blood was sampled at baseline and 10, 35, and 120 minutes after participants received a drink containing sucrose, sucralose, or water to measure plasma glucose, insulin, glucagon-like peptide(7-36), acyl-ghrelin, total peptide YY, and leptin. Participants were then presented with an ad libitum meal. Participants were right-handed, nonsmokers, weight-stable for at least 3 months before the study visits, nondieters, not taking medication, and with no history of eating disorders, illicit drug use, or medical diagnoses. Data analysis was performed from March 2020 to March 2021.
Interventions: Participants ingested 300-mL drinks containing either sucrose (75 g), sucralose (individually sweetness matched), or water (as a control).
Main outcomes and measures: Primary outcomes of interest were the effects of body mass index (BMI) status and sex on blood oxygen level-dependent signal to high-calorie food cues, endocrine, and feeding responses following sucralose vs sucrose consumption. Secondary outcomes included neural, endocrine, and feeding responses following sucrose vs water and sucralose vs water (control) consumption, and cue-induced appetite ratings following sucralose vs sucrose (and vs water).
Results: A total of 76 participants were randomized, but 2 dropped out, leaving 74 adults (43 women [58%]; mean [SD] age, 23.40 [3.96] years; BMI range, 19.18-40.27) who completed the study. In this crossover design, 73 participants each received water (drink 1) and sucrose (drink 2), and 72 participants received water (drink 1), sucrose (drink 2), and sucralose (drink 3). Sucrose vs sucralose was associated with greater production of circulating glucose, insulin, and glucagon-like peptide-1 and suppression of acyl-ghrelin, but no differences were found for peptide YY or leptin. BMI status by drink interactions were observed in the medial frontal cortex (MFC; P for interaction < .001) and orbitofrontal cortex (OFC; P for interaction = .002). Individuals with obesity (MFC, β, 0.60; 95% CI, 0.38 to 0.83; P < .001; OFC, β, 0.27; 95% CI, 0.11 to 0.43; P = .002), but not those with overweight (MFC, β, 0.02; 95% CI, -0.19 to 0.23; P = .87; OFC, β, -0.06; 95% CI, -0.21 to 0.09; P = .41) or healthy weight (MFC, β, -0.13; 95% CI, -0.34 to 0.07; P = .21; OFC, β, -0.08; 95% CI, -0.23 to 0.06; P = .16), exhibited greater responsivity in the MFC and OFC to savory food cues after sucralose vs sucrose. Sex by drink interactions were observed in the MFC (P for interaction = .03) and OFC (P for interaction = .03) after consumption of sucralose vs sucrose. Female participants had greater MFC and OFC responses to food cues (MFC high-calorie vs low-calorie cues, β, 0.21; 95% CI, 0.05 to 0.37; P = .01; MFC sweet vs nonfood cues, β, 0.22; 95% CI, 0.02 to 0.42; P = .03; OFC food vs nonfood cues, β, 0.12; 95% CI, 0.02 to 0.22; P = .03; and OFC sweet vs nonfood cues, β, 0.15; 95% CI, 0.03 to 0.27; P = .01), but male participants' responses did not differ (MFC high-calorie vs low-calorie cues, β, 0.01; 95% CI, -0.19 to 0.21; P = .90; MFC sweet vs nonfood cues, β, -0.04; 95% CI, -0.26 to 0.18; P = .69; OFC food vs nonfood cues, β, -0.08; 95% CI, -0.24 to 0.08; P = .32; OFC sweet vs nonfood cues, β, -0.11; 95% CI, -0.31 to 0.09; P = .31). A sex by drink interaction on total calories consumed during the buffet meal was observed (P for interaction = .03). Female participants consumed greater total calories (β, 1.73; 95% CI, 0.38 to 3.08; P = .01), whereas caloric intake did not differ in male participants (β, 0.68; 95% CI, -0.99 to 2.35; P = .42) after sucralose vs sucrose ingestion.
Conclusions and relevance: These findings suggest that female individuals and those with obesity may be particularly sensitive to disparate neural responsivity elicited by sucralose compared with sucrose consumption.
Trial registration: ClinicalTrials.gov Identifier: NCT02945475.
Conflict of interest statement
Figures



Comment in
-
Nonnutritive Sweeteners and Neural Reward Response in Women and Individuals With Obesity.JAMA Netw Open. 2021 Sep 1;4(9):e2128047. doi: 10.1001/jamanetworkopen.2021.28047. JAMA Netw Open. 2021. PMID: 34581800 No abstract available.
Similar articles
-
Differential effects of nutritive and non-nutritive sweet mouth rinsing on appetite in adults with obesity.Appetite. 2024 Feb 1;193:107133. doi: 10.1016/j.appet.2023.107133. Epub 2023 Nov 23. Appetite. 2024. PMID: 38000768 Clinical Trial.
-
Stevia Beverage Consumption prior to Lunch Reduces Appetite and Total Energy Intake without Affecting Glycemia or Attentional Bias to Food Cues: A Double-Blind Randomized Controlled Trial in Healthy Adults.J Nutr. 2020 May 1;150(5):1126-1134. doi: 10.1093/jn/nxaa038. J Nutr. 2020. PMID: 32125421 Clinical Trial.
-
Non-caloric sweetener effects on brain appetite regulation in individuals across varying body weights.Nat Metab. 2025 Mar;7(3):574-585. doi: 10.1038/s42255-025-01227-8. Epub 2025 Mar 26. Nat Metab. 2025. PMID: 40140714 Clinical Trial.
-
Effects of Non-nutritive Sweeteners on Sweet Taste Processing and Neuroendocrine Regulation of Eating Behavior.Curr Nutr Rep. 2020 Sep;9(3):278-289. doi: 10.1007/s13668-020-00323-3. Curr Nutr Rep. 2020. PMID: 32588329 Review.
-
Effect of sucralose and aspartame on glucose metabolism and gut hormones.Nutr Rev. 2020 Sep 1;78(9):725-746. doi: 10.1093/nutrit/nuz099. Nutr Rev. 2020. PMID: 32065635 Review.
Cited by
-
Dose of sucrose affects the efficacy of Qiweibaizhu powder on antibiotic-associated diarrhea: Association with intestinal mucosal microbiota, short-chain fatty acids, IL-17, and MUC2.Front Microbiol. 2023 Jan 19;14:1108398. doi: 10.3389/fmicb.2023.1108398. eCollection 2023. Front Microbiol. 2023. PMID: 36744095 Free PMC article.
-
Sex as an independent variable in the measurement of satiation: a retrospective cohort study.Int J Obes (Lond). 2022 Dec;46(12):2156-2162. doi: 10.1038/s41366-022-01228-7. Epub 2022 Oct 13. Int J Obes (Lond). 2022. PMID: 36229642 Free PMC article.
-
Sex Differences in Obesity and Cognitive Function in Chinese Elderly Patients With Chronic Schizophrenia.Front Endocrinol (Lausanne). 2022 Apr 1;13:742474. doi: 10.3389/fendo.2022.742474. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 35432207 Free PMC article.
-
Associations of free sugars from solid and liquid sources with cardiovascular disease: a retrospective cohort analysis.BMC Public Health. 2023 Apr 24;23(1):756. doi: 10.1186/s12889-023-15600-3. BMC Public Health. 2023. PMID: 37095459 Free PMC article.
-
Effects of Sucralose Supplementation on Glycemic Response, Appetite, and Gut Microbiota in Subjects with Overweight or Obesity: A Randomized Crossover Study Protocol.Methods Protoc. 2024 Oct 7;7(5):80. doi: 10.3390/mps7050080. Methods Protoc. 2024. PMID: 39452794 Free PMC article.