Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 1;806(Pt 3):150542.
doi: 10.1016/j.scitotenv.2021.150542. Epub 2021 Sep 25.

Ultraviolet avoidance by embryonic buoyancy control in three species of marine fish

Affiliations

Ultraviolet avoidance by embryonic buoyancy control in three species of marine fish

Christina Pasparakis et al. Sci Total Environ. .

Abstract

Pelagic fish embryos are thought to float in or near surface waters for the majority of their development and are presumed to have little to no control over their mobility, rendering these embryos at high risk for damages associated with surface stressors such as ultraviolet radiation (UVR). We recently challenged these long-standing paradigms by characterizing a potential mechanism of stressor avoidance in early-life stage mahi-mahi (Coryphaena hippurus) in which embryos sense external cues, such as UVR, and modify their buoyancy to reduce further exposure. It is unknown whether embryos of other marine fish with pelagic spawning strategies have similar capabilities. To fill this knowledge gap, we investigated buoyancy change in response to UVR in three additional species of marine fish that utilize a pelagic spawning strategy: yellowfin tuna (Thunnus albacares), red snapper (Lutjanus campechanus), and cobia (Rachycentron canadum). Embryos of all three species displayed increased specific gravity and loss of buoyancy after exposures to environmentally relevant doses of UVR, a response that may be ubiquitous to fish with pelagic embryos. To gain further insight into this response, we investigated recovery of buoyancy, oxygen consumption, energy depletion, and photolyase induction in response to UVR exposures in at least one of the three species listed above.

Keywords: Pelagic embryos; Photolyase; Specific gravity; Stress avoidance; Surface waters.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources