Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 28;16(1):399.
doi: 10.1186/s13023-021-02021-x.

HAE patient self-sampling for biomarker establishment

Affiliations

HAE patient self-sampling for biomarker establishment

Toni M Förster et al. Orphanet J Rare Dis. .

Abstract

Background: Hereditary Angioedema (HAE) is a genetic disorder that leads to frequent angioedema attacks in various parts of the body. In most cases it is caused by pathogenic variants in the SERPING1 gene, coding for C1-Inhibitor (C1-INH). The pathogenic variants in the gene result in reduced C1-INH levels and/or activity, which causes aberrant bradykinin production and enhanced vascular permeability. The standard-of-care diagnostic test is performed biochemically via measuring C1-INH level and activity as well as the C4 level. This, however, does not allow for the diagnosis of HAE types with normal C1-INH. There is an urgent need to identify and characterize HAE biomarkers for facilitating diagnostics and personalizing the treatment. The Hereditary Angioedema Kininogen Assay (HAEKA) study aims to measure the dynamics of cleaved High Molecular Weight Kininogen (HKa) and other metabolite levels during the angioedema and non-angioedema state of the disease. The metabolites will be analyzed and verified by liquid chromatography ion mobility high resolution mass spectrometry (LC/IM-QToF MS) of dried blood spot (DBS) cards upon the study completion. The study design is truly innovative: 100 enrolled participants provide blood samples via DBS: (1) every 3 months within 2 years during regular study site visits and (2) by at-home self-sampling during HAE attacks via finger pricking. We are presenting a project design that permits clinical study activities during pandemic contact restrictions and opens the door for other clinical studies during COVID-19.

Results: As of October 2020, there are 41 patients from 5 sites in Germany enrolled. 90 blood samples were collected during the regular visits, and 19 of the participants also performed self-sampling during the HAE attacks from which a total of 286 attack blood samples were collected. Participating patients rate the study procedures as easy to implement in their daily lives. The concept of home self-sampling is effective, reproducible, and convenient especially in times of contact restrictions due to the COVID-19 pandemic.

Conclusions: It is the hope that the HAEKA study will complete in 2023, reveal biomarker(s) for monitoring HAE disease activity, and may help to avoid HAE attacks via applying medication prior to the symptom onset.

Keywords: Biomarker; Cleaved high molecular weight Kininogen; Hereditary angioedema; Observational clinical study; Self-sampling.

PubMed Disclaimer

Conflict of interest statement

Toni M. Förster, Arndt Rolfs, and Volha Skrahina have been during the concept phase and initiation of the study CENTOGENE GmbH employees. Arndt Rolfs has been the founder of CENTOGENE GmbH and holds stock/stock options in the company. Selen Zülbahar and Susanne Zielke are CENTOGENE GmbH employees. Marcus Maurer reports personal fees from Alnylam, grants and personal fees from BioCryst, grants from CENTOGENE, grants and personal fees from CSL Behring, grants from Dyax, grants and personal fees from Kalvista, grants from Pharming, personal fees from Pharvaris, grants and personal fees from Shire/Takeda, outside the submitted work. Markus Magerl is a PI of a center of the HAEKA study. He further reports personal fees and non-financial support from Shire Takeda, personal fees and non-financial support from CSL Behring, personal fees from Pharming, personal fees and non-financial support from Biocryst, personal fees from Kalvista, personal fees from Octapharma, outside the submitted work. Donatello Crocetta is employee of Takeda. Neil Inhaber is employee of Takeda and holds stock/stock options in Takeda.

Figures

Fig. 1
Fig. 1
Recruitment details of the HAEKA study as per 07.10.2020. a Number of participants enrolled per study site. b A boxplot displaying the age distribution of the participants. c Gender distribution of the participants. d Visit status of all participants in the HAEKA study. The number of completed Visits 1–7 is shown. e Prophylactic treatment of HAEKA participants: it is shown how many participants take each respective medication (one subject received both Lanadelumab and Berinert®). f An overview showing how often the different samples af of each attack have been collected. g Acute treatment of HAE attacks: it is shown how many percent of the participants take a respective medication to treat an attack. h Overview on the amount of documented attacks per participant. i Exemplary CentoCard® showing the quality of participant’s self-sampled blood spots
Fig. 2
Fig. 2
Response of the HAEKA participants for being contacted by the study nurse
Fig. 3
Fig. 3
HAEKA Study sampling scheme. The left part shows in which intervals the 7 regular visits of each participant take place. The right part shows at which time points of an acute attack HAEKA participants shall collect samples af via finger pricking. The graph shows a hypothetical curve of a potential biomarker that reflects the course of an HAE attack

References

    1. Bygum A. Hereditary angio-oedema in Denmark: a nationwide survey. Br JDermatol. 2009;161(5):1153–1158. doi: 10.1111/j.1365-2133.2009.09366.x. - DOI - PubMed
    1. Zanichelli A, Arcoleo F, Barca MP, Borrelli P, Bova M, Cancian M, et al. A nationwide survey of hereditary angioedema due to C1inhibitor deficiency in Italy. Orphanet J Rare Dis. 2015;10:11. doi: 10.1186/s13023-015-0233-x. - DOI - PMC - PubMed
    1. Roche O, Blanch A, Caballero T, Sastre N, Callejo D, López-Trascasa M. Hereditary angio-oedema due to C1 inhibitor deficiency: patient registry and approach to the prevalence in Spain. Ann Allergy Asthma Immunol. 2005;94:498–503. doi: 10.1016/S1081-1206(10)61121-0. - DOI - PubMed
    1. Aygören-Pürsün E, Magerl M, Maetzel A, Maurer M. Epidemiology of Bradykinin-mediated angioedema: a systematic investigation of epidemiological studies. Orphanet J Rare Dis. 2018;13(1):73. doi: 10.1186/s13023-018-0815-5. - DOI - PMC - PubMed
    1. Ponard D, Gaboriaud C, Charignon D, Ghannam A, Wagenaar-Bos IGA, Roem D, et al. SERPING1 mutation update: Mutation spectrum and C1 Inhibitor phenotypes. Hum Mutat. 2020;41(1):38–57. doi: 10.1002/humu.23917. - DOI - PubMed

Publication types