Hard X-ray nanoprobe scanner
- PMID: 34584733
- PMCID: PMC8420768
- DOI: 10.1107/S2052252521007004
Hard X-ray nanoprobe scanner
Abstract
X-ray scientists are continually striving to improve the quality of X-ray microscopy, due to the fact that the information obtained from X-ray microscopy of materials can be complementary to that obtained from optical and electron microscopes. In contrast to the ease with which one can deflect electron beams, the relative difficulty to deflect X-ray has constrained the development of scanning X-ray microscopes (SXMs) based on a scan of an X-ray small probe. This restriction has caused severe complications that hinder progress toward achieving ultimate resolution. Here, a simple and innovative method for constructing an SXM equipped with a nanoprobe scanner is proposed. The nanoprobe scanner combines X-ray prisms and advanced Kirkpatrick-Baez focusing mirrors. By rotating the prisms on the order of degrees, X-ray probe scanning with single-nanometre accuracy can be easily achieved. The validity of the concept was verified by acquiring an SXM image of a test pattern at a photon energy of 10 keV, where 50 nm line-and-space structures were resolved. This method is readily applicable to an SXM with a single-nanometre resolution and will assist effective utilization of increasing brightness of fourth-generation synchrotron radiation sources.
Keywords: X-ray mirrors; X-ray nanoprobes; X-ray optics; X-ray prisms; hard X-rays; scanning X-ray microscopy.
© Jumpei Yamada et al. 2021.
Figures



References
-
- Arndt, U. W. & Scotcher, S. W. (2002). J. Appl. Cryst. 35, 650–651.
-
- Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray Physics, 2nd ed. New Jersey: John Wiley & Sons Ltd.
-
- Bajt, S., Prasciolu, M., Fleckenstein, H., Domaracký, M., Chapman, H. N., Morgan, A. J., Yefanov, O., Messerschmidt, M., Du, Y., Murray, K. T., Mariani, V., Kuhn, M., Aplin, S., Pande, K., Villanueva-Perez, P., Stachnik, K., Chen, J., PJ , Andrejczuk, A., Meents, A., Burkhardt, A., Pennicard, D., Huang, X., Yan, H., Nazaretski, E., Chu, Y. S. & Hamm, C. E. (2018). Light Sci. Appl. 7, 17162. - PMC - PubMed
-
- Born, M. & Wolf, E. (2001). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. Cambridge University Press.
-
- Cederström, B., Cahn, R. N., Danielsson, M., Lundqvist, M. & Nygren, D. R. (2000). Nature, 404, 951. - PubMed
LinkOut - more resources
Full Text Sources