Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 28;72(3):173-181.
doi: 10.2478/aiht-2021-72-3541.

The role of pumpkin pulp extract carotenoids against mycotoxin damage in the blood brain barrier in vitro

Affiliations

The role of pumpkin pulp extract carotenoids against mycotoxin damage in the blood brain barrier in vitro

Manuel Alonso-Garrido et al. Arh Hig Rada Toksikol. .

Abstract

Some mycotoxins such as beauvericin (BEA), ochratoxin A (OTA), and zearalenone (ZEA) can cross the blood brain barrier, which is why we tested the anti-inflammatory action of a pumpkin carotenoid extract (from the pulp) against these mycotoxins and their combinations (OTA+ZEA and OTA+ZEA+BEA) on a blood brain barrier model with co-cultured ECV304 and C6 cells using an untargeted metabolomic approach. The cells were added with mycotoxins at a concentration of 100 nmol/L per mycotoxin and pumpkin carotenoid extract at 500 nmol/L. For control we used only vehicle solvent (cell control) or vehicle solvent with pumpkin extract (extract control). After two hours of exposure, samples were analysed with HPLC-ESI-QTOF-MS. Metabolites were identified against the Metlin database. The proinflammatory arachidonic acid metabolite eoxin (14,15-LTE4) showed lower abundance in ZEA and BEA+OTA+ZEA-treated cultures that also received the pumpkin extract than in cultures that were not treated with the extract. Another marker of inflammation, prostaglandin D2-glycerol ester, was only found in cultures treated with OTA+ZEA and BEA+OTA+ZEA but not in the ones that were also treated with the pumpkin extract. Furthermore, the concentration of the pumpkin extract metabolite dihydromorelloflavone significantly decreased in the presence of mycotoxins. In conclusion, the pumpkin extract showed protective activity against cellular inflammation triggered by mycotoxins thanks to the properties pertinent to flavonoids contained in the pulp.

Pojedini mikotoksini poput bovericina (BEA), okratoksina A (OTA) i zearalenona (ZEA) prelaze krvno-moždanu barijeru, a to je i razlog zbog kojega smo istražili djelovanje ekstrakta karotenoida iz mesa bundeve protiv upalnih procesa izazvanih ovim mikotoksinima i njihovim kombinacijama (OTA+ZEA i OTA+ZEA+BEA) na modelu krvno-moždane barijere koji se sastojao od kultura stanica ECV304 i C6, oslanjajući se pritom na neciljani metabolomički pristup. Stanice su tretirane mikotoksinima u koncentraciji od 100 nmol/L po mikotoksinu odnosno ekstraktom karotenoida u koncentraciji od 500 nmol/L. Za kontrolu smo upotrijebili samo otapalo (stanična kontrola) odnosno otapalo s bundevinim ekstraktom (ekstraktna kontrola). Nakon dva sata tretmana uzorci su analizirani metodom tekućinske kromatografije / masene spektrometrije (HPLC-ESI-QTOF-MS), a dobiveni metaboliti identificirani su usporedbom s bazom podataka Metlin. Primjena ekstrakta značajno je smanjila količinu metabolita proupalne arahidonske kiseline eoksina (14,15-LTE4) u kulturama tretiranima samo zearalenonom odnosno kombinacijom BEA+OTA+ZEA. Drugi upalni biljeg, prostaglandin D2-glicerol ester, otkriven je samo u kulturama tretiranima kombinacijama OTA+ZEA odnosno BEA+OTA+ZEA, ali ne i u onima koje su usto tretirane bundevinim ekstraktom. Osim toga, u prisutnosti mikotoksina značajno je porasla koncentracija metabolita dihidromoreloflavona iz bundevina ekstrakta. Time je taj ekstrakt iskazao zaštitno djelovanje protiv stanične upale uzrokovane mikotoksinima zahvaljujući svojstvima flavonoida koji se nalaze u njezinu mesu.

Keywords: ECV304; beauvericin; bovericin; metabolomics; metabolomika; ochratoxin A; okratoksin A; zearalenon; zearalenone.

PubMed Disclaimer

Conflict of interest statement

Conflict of interests

None to declare.

Figures

Figure 1
Figure 1
Workflow used to assess the metabolic profile of the blood-brain barrier model exposed to mycotoxins with and without pumpkin extract. BBB – blood brain barrier; LC-ESI-QTOF-MS – liquid chromatography-electrospray ionisation quantitative time of flight-mass spectrometry
Figure 2
Figure 2
Venn diagrams of the number of significant metabolites (p<0.05) after 2-hour mycotoxin exposure (100 nmol/L per mycotoxin) without pumpkin extract (A) and with pumpkin extract (500 nmol/L) (B)

References

    1. Taevernier L, Bracke N, Veryser L, Wynendaele E, Gevaert B, Peremans K, De Spiegeleer B. Blood-brain barrier transport kinetics of the cyclic depsipeptide mycotoxins beauvericin and enniatins. Toxicol Lett. 2016;258:175–84. doi: 10.1016/j.toxlet.2016.06.1741. - DOI - PubMed
    1. Sava V, Reunova O, Velasquez A, Harbison R, Sánchez-Ramos J. Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology. 2006;27:82–92. doi: 10.1016/j.neuro.2005.07.004. - DOI - PubMed
    1. Ren ZH, Deng HD, Deng YT, Deng JL, Zuo ZC, Yu SM, Shen LH, Cui HM, Xu ZW, Hu YC. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ Toxicol Pharma. 2016;46:62–70. doi: 10.1016/j.etap.2016.06.028. - DOI - PubMed
    1. Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, Sousa JMDC, Rolim HML, Graças M, Medeiros F, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, de Carvalho Melo-Cavalcante AA. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB life. 2018;70:1084–92. doi: 10.1002/iub.1932. - DOI - PubMed
    1. Escrivá L, Jennen D, Caiment F, Manyes L. Transcriptomic study of the toxic mechanism triggered by beauvericin in Jurkat cells. Toxicol lett. 2018;284:213–21. doi: 10.1016/j.toxlet.2017.11.035. - DOI - PubMed

LinkOut - more resources