Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep;597(7878):678-682.
doi: 10.1038/s41586-021-03859-8. Epub 2021 Sep 29.

Mercury stable isotopes constrain atmospheric sources to the ocean

Affiliations

Mercury stable isotopes constrain atmospheric sources to the ocean

Martin Jiskra et al. Nature. 2021 Sep.

Abstract

Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(II) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(II) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(II) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02‰, lying in between atmospheric Hg(0) and Hg(II) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24-50%) atmospheric Hg(II) gross deposition and 58% (50-76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(II) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.

PubMed Disclaimer

References

    1. Sunderland, E. M. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ. Health Perspect. 115, 235–242 (2007). - PubMed - DOI
    1. Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018). - PubMed - PMC - DOI
    1. Horowitz, H. M. et al. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget. Atmos. Chem. Phys. 17, 6353–6371 (2017). - DOI
    1. Travnikov, O. et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmos. Chem. Phys. 17, 5271–5295 (2017). - DOI
    1. Zhang, L., Zhou, P., Cao, S. & Zhao, Y. Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations: a critical review. Atmos. Chem. Phys. 19, 15587–15608 (2019). - DOI

Publication types

LinkOut - more resources