Nutrient-specific proteomic analysis of the mucin degrading bacterium Akkermansia muciniphila
- PMID: 34596327
- DOI: 10.1002/pmic.202100125
Nutrient-specific proteomic analysis of the mucin degrading bacterium Akkermansia muciniphila
Abstract
Akkermansia muciniphila is a prominent mucin-degrading bacterium that acts as a keystone species in regulating the human gut microbiota. Despite recently increasing research into this bacterium and its relevance to human health, a high-resolution database of its functional proteins remains scarce. Here, we provide a proteomic overview of A. muciniphila grown in different nutrient conditions ranging from defined to complex. Of 2318 protein-coding genes in the genome, we identified 841 (40%) that were expressed at the protein level. Overall, proteins involved in energy production and carbohydrate metabolism indicate that A. muciniphila relies mainly on the Embden-Meyerhof-Parnas pathway, and produces short-chain fatty acids through anaerobic fermentation in a nutrient-specific manner. Moreover, this bacterium possesses a broad repertoire of glycosyl hydrolases, together with putative peptidases and sulfatases, to cleave O-glycosylated mucin. Of them, putative mucin-degrading enzymes (Amuc_1220, Amuc_1120, Amuc_0052, Amuc_0480, and Amuc_0060) are highly abundant in the mucin-supplemented media. Furthermore, A. muciniphila uses mucin-derived monosaccharides as sources of energy and cell wall biogenesis. Our dataset provides nutrient-dependent global proteomes of A. muciniphila ATCC BAA-835 to offer insights into its metabolic functions that shape the composition of the human gut microbiota via mucin degradation.
Keywords: Akkermansia muciniphila; glycosyl hydrolase; microbiome; mucin-degrading bacteria; proteome.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Genome-Scale Model and Omics Analysis of Metabolic Capacities of Akkermansia muciniphila Reveal a Preferential Mucin-Degrading Lifestyle.Appl Environ Microbiol. 2017 Aug 31;83(18):e01014-17. doi: 10.1128/AEM.01014-17. Print 2017 Sep 15. Appl Environ Microbiol. 2017. PMID: 28687644 Free PMC article.
-
Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation.Int J Biol Macromol. 2020 Apr 15;149:331-340. doi: 10.1016/j.ijbiomac.2020.01.246. Epub 2020 Jan 25. Int J Biol Macromol. 2020. PMID: 31991210
-
A Purified Aspartic Protease from Akkermansia Muciniphila Plays an Important Role in Degrading Muc2.Int J Mol Sci. 2019 Dec 20;21(1):72. doi: 10.3390/ijms21010072. Int J Mol Sci. 2019. PMID: 31861919 Free PMC article.
-
Akkermansia muciniphila plays critical roles in host health.Crit Rev Microbiol. 2023 Feb;49(1):82-100. doi: 10.1080/1040841X.2022.2037506. Epub 2022 May 21. Crit Rev Microbiol. 2023. PMID: 35603929 Review.
-
Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome.Folia Microbiol (Praha). 2022 Dec;67(6):811-824. doi: 10.1007/s12223-022-00973-6. Epub 2022 May 20. Folia Microbiol (Praha). 2022. PMID: 35596115 Free PMC article. Review.
Cited by
-
Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora.Research (Wash D C). 2023;6:0107. doi: 10.34133/research.0107. Epub 2023 Apr 3. Research (Wash D C). 2023. PMID: 37040299 Free PMC article.
-
The role of Akkermansia muciniphila in maintaining health: a bibliometric study.Front Med (Lausanne). 2025 Feb 3;12:1484656. doi: 10.3389/fmed.2025.1484656. eCollection 2025. Front Med (Lausanne). 2025. PMID: 39967592 Free PMC article.
-
Genome-wide multi-omics analysis reveals the nutrient-dependent metabolic features of mucin-degrading gut bacteria.Gut Microbes. 2023 Jan-Dec;15(1):2221811. doi: 10.1080/19490976.2023.2221811. Gut Microbes. 2023. PMID: 37305974 Free PMC article.
-
Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives.J Microbiol Biotechnol. 2025 Mar 26;35:e2412001. doi: 10.4014/jmb.2412.12001. J Microbiol Biotechnol. 2025. PMID: 40223273 Free PMC article. Review.
-
The potential role of Akkermansia muciniphila in liver health.Future Microbiol. 2024 Aug 12;19(12):1081-1096. doi: 10.2217/fmb-2023-0220. Epub 2024 Aug 7. Future Microbiol. 2024. PMID: 39109507 Free PMC article. Review.
References
REFERENCES
-
- Derrien, M., & Veiga, P. (2017). Rethinking diet to aid human-microbe symbiosis. Trends in Microbiology, 25(2), 100-112. https://doi.org/10.1016/j.tim.2016.09.011
-
- Gulhane, M., Murray, L., Lourie, R., Tong, H., Sheng, Y. H., Wang, R., Kang, A., Schreiber, V., Wong, K. Y., Magor, G., Denman, S., Begun, J., Florin, T. H., Perkins, A., Cuív, P. Ó., Mcguckin, M. A., & Hasnain, S. Z. (2016). High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Scientific Reports, 6(1), 28990. https://doi.org/10.1038/srep28990
-
- Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A., Young, V. B., Henrissat, B., Wilmes, P., Stappenbeck, T. S., Núñez, G., & Martens, E. C. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 167(5), 1339-1353.e1321. https://doi.org/10.1016/j.cell.2016.10.043
-
- Byndloss, M. X., & Bäumler, A. J. (2018). The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 16(2), 103.
-
- Lopetuso, L. R., Scaldaferri, F., Bruno, G., Petito, V., Franceschi, F., & Gasbarrini, A. (2015). The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. European Review for Medical and Pharmacological Sciences, 19(6), 1068-1076.
Publication types
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases