Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;69(5):1573-1584.
doi: 10.1109/TBME.2021.3116935. Epub 2022 Apr 21.

Parkinson's Disease Detection Based on Running Speech Data From Phone Calls

Parkinson's Disease Detection Based on Running Speech Data From Phone Calls

Christos Laganas et al. IEEE Trans Biomed Eng. 2022 May.

Abstract

Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis.

Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients).

Results: By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively.

Conclusions: The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data.

Significance: This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.

PubMed Disclaimer

Publication types