Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct;6(64):eabg7506.
doi: 10.1126/sciimmunol.abg7506. Epub 2021 Oct 1.

c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome

Affiliations

c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome

Hernandez Moura Silva et al. Sci Immunol. 2021 Oct.

Abstract

Macrophages are an essential part of tissue development and physiology. Perivascular macrophages have been described in tissues and appear to play a role in development and disease processes, although it remains unclear what the key features of these cells are. Here, we identify a subpopulation of perivascular macrophages in several organs, characterized by their dependence on the transcription factor c-MAF and displaying nonconventional macrophage markers including LYVE1, folate receptor 2, and CD38. Conditional deletion of c-MAF in macrophage lineages caused ablation of perivascular macrophages in the brain and altered muscularis macrophages program in the intestine. In the white adipose tissue (WAT), c-MAF–deficient perivascular macrophages displayed an altered gene expression profile, which was linked to an increased vascular branching. Upon feeding high-fat diet (HFD), mice with c-MAF–deficient macrophages showed improved metabolic parameters compared with wild-type mice, including less weight gain, greater glucose tolerance, and reduced inflammatory cell profile in WAT. These results define c-MAF as a central regulator of the perivascular macrophage transcriptional program in vivo and reveal an important role for this tissue-resident macrophage population in the regulation of metabolic syndrome.

PubMed Disclaimer

Comment in

Publication types

Substances