Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;29(6):830-840.
doi: 10.1016/j.acra.2021.08.024. Epub 2021 Sep 29.

3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients

Affiliations
Free article

3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients

Carmelo Militello et al. Acad Radiol. 2022 Jun.
Free article

Abstract

Rationale and objectives: To develop and validate a radiomic model, with radiomic features extracted from breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) from a 1.5T scanner, for predicting the malignancy of masses with enhancement. Images were acquired using an 8-channel breast coil in the axial plane. The rationale behind this study is to show the feasibility of a radiomics-powered model that could be integrated into the clinical practice by exploiting only standard-of-care DCE-MRI with the goal of reducing the required image pre-processing (ie, normalization and quantitative imaging map generation).

Materials and methods: 107 radiomic features were extracted from a manually annotated dataset of 111 patients, which was split into discovery and test sets. A feature calibration and pre-processing step was performed to find only robust non-redundant features. An in-depth discovery analysis was performed to define a predictive model: for this purpose, a Support Vector Machine (SVM) was trained in a nested 5-fold cross-validation scheme, by exploiting several unsupervised feature selection methods. The predictive model performance was evaluated in terms of Area Under the Receiver Operating Characteristic (AUROC), specificity, sensitivity, PPV and NPV. The test was performed on unseen held-out data.

Results: The model combining Unsupervised Discriminative Feature Selection (UDFS) and SVMs on average achieved the best performance on the blinded test set: AUROC = 0.725±0.091, sensitivity = 0.709±0.176, specificity = 0.741±0.114, PPV = 0.72±0.093, and NPV = 0.75±0.114.

Conclusion: In this study, we built a radiomic predictive model based on breast DCE-MRI, using only the strongest enhancement phase, with promising results in terms of accuracy and specificity in the differentiation of malignant from benign breast lesions.

Keywords: Breast cancer, Dynamic contrast-enhanced magnetic resonance imaging; machine learning, Radiomics, unsupervised feature selection, Support vector machines.

PubMed Disclaimer

Publication types

LinkOut - more resources