Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;22(3):927-945.
doi: 10.1111/1755-0998.13523. Epub 2021 Oct 10.

Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations

Affiliations

Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations

Gil Yardeni et al. Mol Ecol Resour. 2022 Apr.

Abstract

Target capture has emerged as an important tool for phylogenetics and population genetics in nonmodel taxa. Whereas developing taxon-specific capture probes requires sustained efforts, available universal kits may have a lower power to reconstruct relationships at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly developed target capture set for Bromeliaceae, a large and ecologically diverse plant family with highly variable diversification rates. The set targets 1776 coding regions, including genes putatively involved in key innovations, with the aim to empower testing of a wide range of evolutionary hypotheses. We compare the relative power of this taxon-specific set, Bromeliad1776, to the universal Angiosperms353 kit. The taxon-specific set results in higher enrichment success across the entire family; however, the overall performance of both kits to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of universal kits for resolving evolutionary relationships. For more detailed phylogenetic or population genetic analyses, for example the exploration of gene tree concordance, nucleotide diversity or population structure, the taxon-specific capture set presents clear benefits. We discuss the potential lessons that this comparative study provides for future phylogenetic and population genetic investigations, in particular for the study of evolutionary radiations.

La captura selectiva de secuencias de ADN ha surgido como una herramienta importante para la filogenética y la genética de poblaciones en taxones no-modelo. Mientras que el desarrollo de sondas de captura específicas para cada taxón requiere un esfuerzo sostenido, las colecciones de sondas universales disponibles pueden tener una potencia disminuida para la reconstrucción de relaciones filogenéticas poco profundas o de radiaciones rápidas. Presentamos aquí un conjunto de sondas para la captura selectiva desarrollado recientemente para Bromeliaceae, una familia de plantas extensa, ecológicamente diversa y con tasas de diversificación muy variables. El conjunto de sondas se centra en 1776 regiones de codificación, incluyendo genes supuestamente implicados en rasgos de innovación clave, con el objetivo de potenciar la comprobación de una amplia gama de hipótesis evolutivas. Comparamos la potencia relativa de este conjunto de sondas diseñado para un taxón específico, Bromeliad1776, con la colección universal Angiosperms353. El conjunto específico da lugar a un mayor éxito de captura en toda la familia. Sin embargo, el rendimiento global de ambos kits para reconstruir árboles filogenéticos es relativamente comparable, lo que pone de manifiesto el gran potencial de los kits universales para resolver las relaciones evolutivas. Para análisis filogenéticos o de genética de poblaciones más detallados, como por ejemplo la exploración de la congruencia de los árboles de genes, la diversidad de nucleótidos o la estructura de la población, el conjunto de captura específico para Bromeliaceae presenta claras ventajas. Discutimos las lecciones potenciales que este estudio comparativo proporciona para futuras investigaciones filogenéticas y de genética de poblaciones, en particular para el estudio de las radiaciones evolutivas.

Keywords: Tillandsia; Bromeliaceae; phylogenomics; plant radiation; population structure; target capture.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Effects of (a) putative gene copy number, (b) gene GC content, (c) average exon size, and (d) per cent of identity on bait efficiency in Bromeliad1776 bait set, measured as the number of high‐quality reads uniquely mapping to bait target region across samples. Continuous variable was binned and y‐values higher than 1000 excluded for visualization in b–d
FIGURE 2
FIGURE 2
Coalescent‐based species trees generated ASTRAL‐III for samples enriched with Bromeliad1776 (left) and Angiosperms353 (right, flipped for mirroring), on 269 and 1600 genes for each set, respectively. Node values represent local posterior probabilities (pp) for the main topology and are equal to 1 unless noted otherwise. Pie charts at the nodes show levels of gene tree discordance: the percentages of concordant gene trees (blue), the top alternative bipartition (green), other conflicting topologies (red) and uninformative gene trees (grey). At bottom, length and average bootstrap support for gene trees from either data set, according to the design of the bait set used for enrichment: Angiosperms353 (right) and Bromeliad1776 (left). Each gene was considered a single genomic window
FIGURE 3
FIGURE 3
Principal component analysis (PCA) plot for samples of Tillandsia subgenus Tillandsia enriched with two bait sets: (a) Angiosperms353 (1025 variants); (b) Bromeliad1776 (32,941 variants). Colours indicate different species according to legend
FIGURE 4
FIGURE 4
Population structure of 5 Tillandsia subgenus Tillandsia species from 14 sampling locations inferred with the ADMIXTURE software. Samples were enriched with either of two bait sets: Angiosperms353 (9804 variants after LD‐pruning) and Bromeliad1776 (42,613 variants after LD‐pruning), showing values of K = 2 to K = 9. Colours represent genetically differentiated groups, while each accession is represented by a vertical bar
FIGURE 5
FIGURE 5
Distribution of Tajima's D and synonymous (π S) nucleotide diversity within each species for the Bromeliad1776 kit

Similar articles

Cited by

References

    1. Aguirre‐Santoro, J. , Salinas, N. R. , & Michelangeli, F. A. (2020). The influence of floral variation and geographic disjunction on the evolutionary dynamics of Ronnbergia and Wittmackia (Bromeliaceae: Bromelioideae). Botanical Journal of the Linnean Society, 192(4), 609–624. 10.1093/botlinnean/boz087 - DOI
    1. Alexander, D. H. , & Lange, K. (2011). Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12(1), 246. 10.1186/1471-2105-12-246 - DOI - PMC - PubMed
    1. Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute.
    1. Bagley, J. C. , Uribe‐Convers, S. , Carlsen, M. M. , & Muchhala, N. (2020). Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Molecular Phylogenetics and Evolution, 152, 106769. 10.1016/j.ympev.2020.106769 - DOI - PubMed
    1. Barfuss, M. H. , Till, W. , Leme, E. M. , Pinzón, J. P. , Manzanares, J. M. , Halbritter, H. , Samuel, R. , & Brown, G. K. (2016). Taxonomic revision of Bromeliaceae subfam. Tillandsioideae based on a multi‐locus DNA sequence phylogeny and morphology. Phytotaxa, 279(1), 1–97. 10.11646/phytotaxa.279.1.1 - DOI

LinkOut - more resources