Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2022 Jun 10;108(13):1020-1029.
doi: 10.1136/heartjnl-2021-320036.

Prediction of incident atrial fibrillation in community-based electronic health records: a systematic review with meta-analysis

Affiliations
Meta-Analysis

Prediction of incident atrial fibrillation in community-based electronic health records: a systematic review with meta-analysis

Ramesh Nadarajah et al. Heart. .

Abstract

Objective: Atrial fibrillation (AF) is common and is associated with an increased risk of stroke. We aimed to systematically review and meta-analyse multivariable prediction models derived and/or validated in electronic health records (EHRs) and/or administrative claims databases for the prediction of incident AF in the community.

Methods: Ovid Medline and Ovid Embase were searched for records from inception to 23 March 2021. Measures of discrimination were extracted and pooled by Bayesian meta-analysis, with heterogeneity assessed through a 95% prediction interval (PI). Risk of bias was assessed using Prediction model Risk Of Bias ASsessment Tool and certainty in effect estimates by Grading of Recommendations, Assessment, Development and Evaluation.

Results: Eleven studies met inclusion criteria, describing nine prediction models, with four eligible for meta-analysis including 9 289 959 patients. The CHADS (Congestive heart failure, Hypertension, Age>75, Diabetes mellitus, prior Stroke or transient ischemic attack) (summary c-statistic 0.674; 95% CI 0.610 to 0.732; 95% PI 0.526-0.815), CHA2DS2-VASc (Congestive heart failure, Hypertension, Age>75 (2 points), Stroke/transient ischemic attack/thromboembolism (2 points), Vascular disease, Age 65-74, Sex category) (summary c-statistic 0.679; 95% CI 0.620 to 0.736; 95% PI 0.531-0.811) and HATCH (Hypertension, Age, stroke or Transient ischemic attack, Chronic obstructive pulmonary disease, Heart failure) (summary c-statistic 0.669; 95% CI 0.600 to 0.732; 95% PI 0.513-0.803) models resulted in a c-statistic with a statistically significant 95% PI and moderate discriminative performance. No model met eligibility for inclusion in meta-analysis if studies at high risk of bias were excluded and certainty of effect estimates was 'low'. Models derived by machine learning demonstrated strong discriminative performance, but lacked rigorous external validation.

Conclusions: Models externally validated for prediction of incident AF in community-based EHR demonstrate moderate predictive ability and high risk of bias. Novel methods may provide stronger discriminative performance.

Systematic review registration: PROSPERO CRD42021245093.

Keywords: atrial fibrillation; electronic health records; meta-analysis; primary care.

PubMed Disclaimer

Conflict of interest statement

Competing interests: MGDB was a committee member of the NICE guideline (NG196) atrial fibrillation: diagnosis and management. CPG has received grants for research from Abbott and Bristol Myers Squibb; consulting fees from Astrazeneca, Bayer and Daiichi Sankyo; honoraria for speaking at meetings and educational events from Astrazeneca, Wondr Medical and Menarini; support for attending meetings from Bayer and Bristol Myers Squibb; and has acted as an advisory board member for Amgen, Astrazeneca, Bayer, Daiichi Sankyo and Menarini. All other authors declare no competing interests, or activities that could appear to have influenced the submitted work.

Figures

Figure 1
Figure 1
Flow diagram of literature search. AF, atrial fibrillation; AFl, atrial flutter; EHR, electronic health record.
Figure 2
Figure 2
An overview of the ten predictors most frequently incorporated in the prediction models in this study. IHD, ischaemic heart disease; MI, myocardial infarction; SBP, systolic blood pressure.
Figure 3
Figure 3
Judgements on the four PROBAST risk of bias domains and three PROBAST applicability domains presented as percentages across all included studies. PROBAST, Prediction model Risk of Bias ASsessment Tool; ROB, risk of bias.
Figure 4
Figure 4
Forest plot of primary analysis of c-statistics. C2HEST, Coronary artery disease/chronic obstructive pulmonary disease (one point each), Hypertension, Elderly (Age ≥75, 2 points), Systolic heart failure, Thyroid disease (hyperthyroidism); CHADS2, Congestive Heart failure, hypertension, Age>75, Diabetes mellitus, prior Stroke or transient ischaemic attack (two points); CHA2DS2-VASc, Congestive heart failure, Hypertension, Age >75 (2 points), Stroke/transient ischaemic attack/thromboembolism (two points), Vascular disease, Age 65–74, sex category; ClalitHS, Clalit health services; HATCH, Hypertension, Age, stroke or Transient ischemic attack, Chronic obstructive pulmonary disease, and Heart failure; NHIRD, National Health Insurance Research Database; NHIS-HEALS, National Health Insurance Service - Health screening Cohort; NHIS-NSC, National Health Insurance Service-based National Sample Cohort; Nivel-PCD, Netherlands Institute for Health Services Research Primary Care Database; YMID, Yunnan Medical Insurance Database.

Similar articles

Cited by

References

    1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 1991;22:983–8. 10.1161/01.STR.22.8.983 - DOI - PubMed
    1. Hindricks G, Potpara T, Dagres N, et al. . 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association for Cardio-Thoracic surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of cardiology (ESC) developed with the special contribution of the European heart rhythm association (EHRA) of the ESC. Eur Heart J 2021;42:373–498. 10.1093/eurheartj/ehaa612 - DOI - PubMed
    1. Hart RG, Pearce LA, Aguilar MI. Meta-Analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146:857–67. 10.7326/0003-4819-146-12-200706190-00007 - DOI - PubMed
    1. Ruff CT, Giugliano RP, Braunwald E, et al. . Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 2014;383:955–62. 10.1016/S0140-6736(13)62343-0 - DOI - PubMed
    1. Public Health England . Technical document for subnational English atrial fibrillation prevalence estimates: application of age–sex rates in a Swedish region to the English population, 2017. Available: https://www.gov.uk/government/publications/atrial-fibrillation-prevalenc... [Accessed 24 Mar 2021].

Publication types