Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 1;806(Pt 3):150652.
doi: 10.1016/j.scitotenv.2021.150652. Epub 2021 Oct 2.

Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration

Affiliations

Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration

Yanghao Yan et al. Sci Total Environ. .

Abstract

By the facile immobilization of ethylenediamine tetramethylene-phosphonic acid (EDTMPA) onto the surface and into the defects of UiO-66, a stable and efficient adsorbent named UiO-66-EDTMPA was obtained for the first time. In terms of removing aqueous heavy metal ions (Pb2+, Cd2+, Cu2+), the maximum adsorption capacities of UiO-66-EDTMPA reached 558.67, 271.34 and 210.89 mg/g, which were 8.77 (Pb2+), 5.63 (Cd2+) and 5.19 (Cu2+) times higher than raw UiO-66 respectively. The adsorption behavior of three heavy metal ions on UiO-66 and UiO-66-EDTMPA were investigated and compared through batch control experiments and theoretical studies. The main factors on adsorption progress (i.e., the dosage of EDTMPA, pH, ionic strength, co-existing ions, initial concentration, contact time, temperature) were explored, and the critical characterization (i.e., SEM, TEM, XRD, FT-IR, TG-DTG, XPS, N2 adsorption-desorption test) were performed. Molecular dynamics (MD) simulation (radial distribution functions (RDF) and mean square displacement (MSD)) were also applied to reveal the adsorption behavior. Besides, two new quantum chemical analyses (Hirshfeld surface and independent gradient model (IGM)) were introduced into the interaction analysis between UiO-66 and EDTMPA. The complete results showed that (1) where the hydrogen bond and (vdW) connect EDTMPA to UiO-66. (2) The coordination between O, N atoms of EDTMPA and heavy metal ions (Pb2+, Cd2+, Cu2+) resulted in spontaneous adsorption. (3) The adsorption behavior agreed with Langmuir and pseudo-second-order model, endothermic reaction. In addition, the desorption and reusability study showed promising stable and sustainable performance. This work has some guiding significance for the experimental and theoretical study of removing heavy metal ions from aqueous solutions by MOF or modified MOF materials.

Keywords: Adsorption mechanism; Heavy metal ions removal; Molecular dynamics simulation; Multiwfn; UiO-66-EDTMPA.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources